| 研究生: |
陳志宏 Chih-Hung Chen |
|---|---|
| 論文名稱: |
產生實像之成像面圓盤型複合全像片製作與複製研究 Study on the fabrication and copying methods of image-plane disk-type multiplex holograms for real-image generation |
| 指導教授: |
鄭益祥
Yih-Shyang Cheng |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 全像展示 、複合全像術 |
| 外文關鍵詞: | holographic display, multiplex holography |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「圓盤型複合全像術」是鄭益祥博士、蘇威宏博士與張瑞城博士所提出,它具備了圓柱型複合全像片能夠展現360°影像的優點,以及平面型複合全像片適於壓印的特性。然而,傳統複合全像術所重建的影像會有惱人的「柵欄效應」產生,使觀看到的影像品質不佳,因此本論文提出「成像面圓盤型複合全像術」,可有效解決此問題,觀賞者可以看到無暗紋且清晰的立體「虛像」。此外,若將參考光源安排到適當的方位,則可以產生出「實像」,本論文將會詳述此技術的理論與實驗結果。而在全像片量產方面,本論文提出以「單光束」光學翻拍系統來複製可三百六十度環繞觀賞的圓盤型全像片,同時對光波「極化」所造成的影響,有詳盡的敘述。另外,基於「反射式」全像術有製作全彩3D影像之潛力,本論文以「雙步驟」翻拍製作圓盤型反射式全像片,並且探討「無透鏡複製系統」的可行性。
本論文的第一部分內容,提出展示立體「實像」之「成像面圓盤型複合全像術」之構想,在其製作的光學系統中,原始物體某個視角的二維影像資訊是經由雷射光束的攜帶,再藉著透鏡的成像功能,被成像於全像底片平面上,最後與同調參考波干涉而產生全像干涉圖形。我們將介紹此種全像術製作與影像重建的理論模型;成像面圓盤型複合全像片可以用較大的白光來做為重建參考光源,而發生於傳統型複合全像片中的柵欄效應也已被消除,另一方面,我們會利用電腦進行數值模擬,尋找適當的全像片製作參數,並繪製出觀賞空間的重建影像,最後我們結合此全像技術展示實像、虛像的功能,完成以單一重建光即可同時產生實、虛像的全像片。
論文之第二部分則提出一套複製圓盤型複合全像片的技術。一般而言,光阻材料常被使用於「壓印式全像」產品的「母板」製作,然而由於光阻所需的曝光量遠大過鹵化銀材料(約百倍至千倍),因此若以光阻材料記錄複合全像資訊,將受耗費時間、容易被環境擾動等因素所影響,導致成功率降低。因此本論文提出一套單次曝光(複製)的技術,可增加其量產之可行性。論文中我們將介紹「雙步驟」製作成像面圓盤型複合全像片的方法,首先,以第一部分介紹的技術,製作含有複合全像資訊的全像「母片」,然後藉由我們所提出的「單光束」光學複製系統,來翻拍至全像「子片」(即為全像成品)。由於製作過程中,複製系統之雷射光源的「極化」方向,會造成全像子片上各區域的干涉情況不同,導致全像成品各區的繞射效率不均,因此,本論文以理論與實驗來分析這些影響繞射的因素。
在論文第三部分,我們提出雙步驟「反射式」成像面圓盤型複合全像術可經由白光照射重建出幾乎單色的立體實像。它包含有全像母片製作、全像子片複製。另外,為了增加觀賞視窗,我們會在第一步驟的物光系統中加入毛玻璃和狹縫。另一方面,我們提出「無透鏡」的複製光學系統,此系統以發散波來複製全像片,可提昇展示大型影像的可行性。
「成像面圓盤型複合全像術」不但省去了價格昂貴的柱狀透鏡,而且所重建出的影像較不變形,若結合日趨成熟且價格低廉的光碟片製作技術大量生產,將會使得展示型全像片生活化,而由本論文得到的理論和實驗結果,將有助於量產的實現;而在「反射式」複合全像技術方面,它可經由白光照射重建出幾乎單色的立體實像,若能精確地控制不同色光(紅綠藍三原色)視窗的疊合,則能拍攝並重建出具有真實色彩的3D影像。
Disk-type multiplex holography was originally proposed by Prof. Cheng, Prof. Su, and Dr. Chang in 1999. However, the finished multiplex holograms are composed of a series of long-thin individual holograms which consequently causes the reconstructed images overlaid with a fence structure. More recently, the image-plane multiplex holograms (IPDTMHs) are developed to be capable of displaying 3D images free from the “picket-fence effect”. The IPDTMH can generate a virtual image behind the hologram. In fact, real images can be generated from the IPDTMHs, which will be proposed in this dissertation. We have further developed a 360-degree viewable IPDTMH in 2004. A single-beam copying system for this kind of hologram will also be introduced. Furthermore, the reflection IPDTMHs for 360-degree viewing are discussed in the last part of this dissertation.
In the first part of this dissertation, we introduce how to generate 3D real images from an image-plane disk-type multiplex hologram. In the formation of a multiplex hologram, a 2D image from original 3D object is directly imaged on to the recording film plane based on the imaging properties of lenses. The theory of this type of hologram is built. This kind of hologram is suitable for white-light line-source reconstruction and the reconstructed 3D image is free from the “picket-fence effect” as occurred in the traditional multiplex hologram. The characteristics of the image are numerically simulated. Since this type of hologram can generate real images as well as virtual images, we also discuss how to generate both images simultaneously with one white-light line-source illumination.
Photo-resist materials are ordinarily used in production of master plates for embossed holograms but we know that the exposure time needed for grating formation in photo resist is much longer than that needed for a silver halide film which of course makes it impractical for multiplex hologram fabrication. It seems that single exposure would be more efficient for mass production. Then, in the second part of this dissertation, a two-step holographic process for the fabrication of an image-plane disk-type multiplex hologram is described. We discuss how to produce a master hologram (H1) and present a simple optical system for single-beam copying process (H2). The diffraction efficiency of the transfer hologram (H2) is measured as a function of exposure. However, it is found to be influenced by the polarization of the light beams of the copying system, resulting in different diffracted beam diffraction efficiencies from two areas (under different interference conditions) of the transfer. The factors which cause the phenomenon of diffraction efficiency difference are demonstrated and the corresponding experimental results are discussed.
A method for making the reflection image-plane disk-type multiplex holograms is also introduced in the last part of the dissertation. A two-step holographic process, including the fabrication of a master hologram (H1) and the production of a transfer hologram (H2), for the fabrication of 360-degree walk around viewable reflection image-plane disk-type multiplex holograms is proposed. In order to increase both the vertical and the longitudinal viewing window, a diffuser and a fan-shaped slit are utilized in the optical system of the object wave in the first-step recording (H1). The finished hologram (H2) can generate single-colored clear image under white-light line-source illumination. An alternative lensless copying system for fabrication of the reflection multiplex hologram, which allows one-shot recording of bigger images, is also described. Both experimental and computer-simulated results for the characteristics of the images from this kind of hologram are presented.
The IPDTMH is suitable for mass production using the well-developed CD technology and it would be an appropriate time to utilize this kind of hologram to display scientific data, tomographic data, and images of people or scenery. The theoretical and experimental results in this dissertation should be helpful in the design of a single-beam holographic transferring system for mass production of IPDTMHs. On the other hand, the image reconstructed with a reflection hologram is quite single-colored because of the property of high wavelength selectivity. Using this property one can design the viewing slits at a fixed location in the reconstruction process for various wavelengths (RGB) and then makes full-color holograms with one laser source by pre-soaking the unexposed film in triethanolamine (TEA) liquid of suitable concentrations in the near future.
1. D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
2. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Amer. 52, 1123-1130 (1962).
3. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Amer. 53, 1377-1381 (1963).
4. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Amer. 54, 1295-1301 (1964).
5. S. A. Benton, “Hologram reconstructions with extended light sources,” J. Opt. Soc. Amer. 59,1545-1546(1969).
6. J. T. McCrickerd and N. George, “Holographic Stereogram from Sequential Component Photographs,” Appl. Phys. Lett. 12, 10-12 (1968).
7. D. J. De Bitetto, “Bandwidth reduction of hologram transmission system by elimination of vertical parallax,” Appl. Phys. Lett. 12, 176-178 (1968).
8. R. D. Bahuguna and F. Mendoza-Santoyo, "Simple rainbow-holographic techniques for two-dimensional transparencies," Opt. Lett. 9, 381-383 (1984).
9. E. N. Leith and H. Chen, "Deep-image rainbow holograms," Opt. Lett. 2, 82-84 (1978).
10. R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20-22 (1967).
11. M. Yamaguchi, H. Endoh, T. Honda, and N. Ohyama, “High-quality recording of a full-parallax holographic stereograms with a digital diffuser,” Opt. Lett. 19, 135-137 (1994).
12. M. Yamaguchi, N. Ohyama, and T. Honda, “Holographic three-dimensional printer: new method,” Appl. Opt. 31, 217-222 (1992).
13. M. Yamaguhi, H. Sugiura, T. Honda, and N. Ohyama, "Automatic recording method for holographic three-dimensional animation," J. Opt. Soc. Am. A 9, 1200-1205 (1992).
14. D. J. DeBitetto, “Holographic panoramic stereograms synthesized from white light recordings,” Appl. Opt. 8, 1740-1741 (1969).
15. D. J. DeBitetto, “Transmission bandwidth reduction of holographic stereograms recorded in white light,” Appl. Phys. Lett. 12, 343-344 (1968).
16. L. Huff and R. L. Fusek, “Color holographic stereograms,” Opt. Eng. 19, 691–695 (1980).
17. E. N. Leith and P. Voulgaris, “Multiplex holography: some new methods,” Opt. Eng. 24, 171–175 (1985).
18. G. Saxby, Practical Holography, 2nd ed., (Prentice-Hall, Englewood Cliffs, N.J., 1994) , p. 308-311.
19. S. A. Benton, “Alcove holograms for computer-aided design,” in True Three-Dimensional Imaging Techniques and Display Technologies, D. F. McAllister and W. E. Robbins (eds.), Proc. SPIE 761, 53–61 (1987).
20. N. D. Haig, “Three-dimensional holograms by rotational multiplexing of two-dimensional films,” Appl. Opt. 12, 419-420 (1973).
21. J. Upatnieks, “Edge-illuminated holograms,” Appl. Opt. 31, 1048-1052 (1992).
22. N. Ohyama, Y. Minami, A. Watanabe, J. Tsujiuchi and T. Honda, “Multiplex holograms of a skull made of CT images,” Opt. Commun. 61, 96–99 (1987).
23. T. T. Chia, A. C. Goh and Y. K. Lai, “Computer-generated holograms with a commercial microfilm,” Opt. Commun. 19, 263–264 (1987).
24. K. Nagashima and T. Asakura, “Computer-generated line holograms using an xy plotter,” Opt. Commun. 15, 133–137 (1983).
25. M. C. King, A. M. Noll, and D. H. Berry, “A new approach to computer-generated holography,” Appl. Opt. 9, 471-475 (1970).
26. A. W. Lohmann and D. P. Paris, "Binary Fraunhofer holograms, generated by computer," Appl. Opt. 6, 1739-1748 (1967).
27. K. Choi, J. Kim, Y. Lim, and B. Lee, "Full parallax viewing-angle enhanced computer-generated holographic 3D display system using integral lens array," Opt. Express 13, 10494-10502 (2005).
28. Y. Sando, M. Itoh, and T. Yatagai, "Fast calculation method for cylindrical computer-generated holograms," Opt. Express 13, 1418-1423 (2005).
29. M. L. Tachiki, Y. Sando, M. Itoh, and T. Yatagai, "Fast calculation method for spherical computer-generated holograms," Appl. Opt. 45, 3527-3533 (2006).
30. K. Okada, S. Yoshii, Y. Yamaji, J. Tsujiuchi and T. Ose, “Conical holographic stereograms,” Opt. Commun. 73, 347-350 (1989).
31. L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsujiuchi, “Color conical holographic stereogram,” Opt. Eng. 34, 814-818 (1995).
32. L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsuijiuchi, “Distortion compensation and perspective correction method for a conical holographic stereogram,” Opt. Eng. 36, 1706-1712 (1997).
33. Y. S. Cheng, S. Y. Chen, and R. C. Chang, “Distortion correction for conical multiplex holography using direct object-image relationship,” Proc. Natl. Sci. Counc. ROC (A) 25, 300-308 (2001).
34. Y. S. Cheng, W. H. Su, and R. C. Chang, “Disk-type multiplex holography,” Appl. Opt. 38, 3093-3100 (1999).
35. Hsuan Chen, E. N. Leith and Y. S. Cheng, “A method of image plane multiplex holography,” Opt. Commun. 48, 98–102 (1983).
36. Y. S. Cheng, H. J. Kuo, “Image-plane conical multiplex holography with astigmatic recording reference wave,” Proc. 19th International Commission for Optics, SPIE 4829, 551-552 (2002).
37. Y. S. Cheng and C. M. Lai, “Image-plane conical multiplex holography by one-step recording,” Opt. Eng. 42, 1631-1639 (2003).
38. L. Rosen, “Focused-image holography with extended sources,” Appl. Phys. Lett. 9, 337-339 (1966).
39. T. Honda, K. Okada, and J. Tsujiuchi, “3-D distortion of observed images reconstructed from a cylindrical holographic stereogram. (1) laser light reconstruction type,” Opt. Commun. 36, 11-16 (1981).
40. K. Okada, T. Honda, and J. Tsujiuchi, “3-D distortion of observed images reconstructed from a cylindrical holographic stereogram. (2) white light reconstruction type,” Opt. Commun. 36, 17-21 (1981).
41. K. Bazargan and M. R. B. Forshaw, “An image-plane hologram with non-image-plane motion parallax,” Opt. Commun. 32, 45–47 (1980).
42. Y. S. Cheng and R. C. Chang, “Image-plane cylindrical holographic stereogram,” Appl. Opt. 39, 4058-4069 (2000).
43. Y. S. Cheng and C. H. Chen, “Image-plane disk-type multiplex hologram,” Appl. Opt. 42, 7013-7022 (2003).
44. K. Okada, T. Honda and J. Tsujiuchi, “A method of distortion compensation of multiplex holograms,” Opt. Commun. 48, 167–170 (1983).
45. Juris Upatnieks and Jyung Jin Chang, “Noise reduction in holographic images,” Opt. Commun. 9, 348–349 (1973).
46. 陳志宏,鄭益祥,“成實像之圓盤型複合全像術,”Proc. II Optics and Photonics Taiwan ''03, 402-404 (2003).
47. Y. S. Cheng and C. H. Chen, "Real image generation from an image-plane disk-type multiplex hologram," Proc. Photon04, Glasgow UK, 59 (2004).
48. 陳志宏,鄭益祥,謝易辰,“圓盤型複合全像術之動態影像展示,”Proc. I Optics and Photonics Taiwan ''03, 227-229 (2003).
49. 陳志宏,鄭益祥,“同時產生虛像與實像之圓盤型複合全像片,”Proc. Optics and Photonics Taiwan ''04, D-SA-Ⅵ2-5 (2004).
50. C. -H. Chen, Y. -S. Cheng, and Z. -Y. Lei, "Single-beam copying system of 360-degree viewable image-plane disk-type multiplex hologram and polarization effects on diffraction efficiency," Opt. Express 15, 10804-10813 (2007).
51. H. J. Caulfield, ed., Handbook of Optical Holography (Academic Press, New York, 1979), pp. 373-378.
52. 鄭益祥、陳志宏、蘇永添,“製作圓盤型複合全像展示片之裝置及方法,” 中華民國發明專利第206550號 (2004).
53. Y. S. Cheng, Y. T. Su, and C. H. Chen, “360-degree viewable image-plane disk-type multiplex holography,” in Frontiers in Optics, Laser Science XXI (Optical Society of America, 2005), paper FMD5.
54. E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Fan, D. Yost, and S. Rabe, “Low polarization dependent diffraction grating for wavelength demultimlexing,” Opt. Express 12, 269-275 (2004).
55. J. R. Marciante, J. I. Hirsh, D. H. Raguin, and E. T. Prince, “Polarization-insensitive high-dispersion total internal reflection diffraction gratings,” J. Opt. Soc. Am. A 22, 299-305 (2005).
56. S. –D. Wu, T. K. Gaylord, and E. N. Glytsis, “Optimization of sawtooth surface-relief gratings: effects of substrate refractive index and polarization,” Appl. Opt. 45, 3420-3424 (2006).
57. T. Clausnitzer, T. Kämpfe, E. –B. Kley, A. Tünnermann, A. Tishchenko, and O. Parriaux, “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting,” Appl. Opt. 46, 819-826 (2007).
58. F. Canova, R. Clady, J. –P. Chambaret, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression,” Opt. Express 15, 15324-15334 (2007).
59. K. Yokomori, “Dielectric surface-relief gratings with high diffraction efficiency,” Appl. Opt. 23, 2303-2310 (1984).
60. R. J. Collier, C. B. Burckhardt and L. H. Lin, Optical Holography (Academic Press, New York, 1971).
61. G. Lippmann, “Epreuves reversibles,” Comptes Rendus 146, 446-451 (1908).
62. Yu N. Denisyuk, “Photographic reconstruction of the optical properties of an object in its own scattered radiation field,” Sov. Phys. Dokl. 7, 543-545 (1962).
63. Y. Taketomi and T. Kubota, "Reflection hologram for reconstructing deep images," Opt. Lett. 22, 1725-1727 (1997).
64. T. Kubota, Y. Awatsuji, and Y. Taketomi, “Resolution of a reflection hologram recorded with a slit,” Appl. Opt. 39, 3466-3472 (2000).
65. P. Trochtchanovitch, N. Kostrov, E. Goulanian, A. F. Zerrouk, E. Pen, and V. Shelkovnikov, “Method of characterization of effective shrinkage in reflection holograms, ” Opt. Eng. 43, 1160-1168 (2004).
66. J. M. Heaton and L. Solymar, “Wavelength and angular selectivity of high diffraction efficiency reflection holograms in silver halide photographic emulsion, ” Appl. Opt. 24, 2931-2936 (1985).
67. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media, ” Appl. Opt. 5, 1303-1311 (1966).
68. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14, 1124-1136 (1997).
69. J. Upatnieks, J. Marks, and R. Fedorowicz, “Color holograms for white light reconstruction, ” Appl. Phys. Lett. 8, 286-287 (1966).
70. L. H. Lin and C. V. LoBianco, “Experimental techniques in making multicolor white light reconstructed holograms, ” Appl. Opt. 6, 1255-1258 (1967).
71. D. R. Wuest and R. S. Lakes, “Color control in reflection holograms by humidity, ” Appl. Opt. 30, 2363-2367 (1991).
72. Y. -S. Cheng, C. -H. Chen, and Y. -C. Hsieh, "Reflection Disk-type Multiplex Holography Using Two-step Recording," accepted by Japanese Journal of Applied Physics (2008).
73. 陳志宏,鄭益祥,簡天隆,“擴展垂直視角之反射式圓盤型複合全像術,”Proc. Optics and Photonics Taiwan ''05, D-FR-VI 2-4 (2005).
74. 陳志宏,鄭益祥,“以發散參考波製作之反射式圓盤型複合全像術,”Proc. Optics and Photonics Taiwan ''05, PD-FR1-03 (2005).
75. J. W. Goodman: Introduction to Fourier Optics (McGraw-Hill, Singapore, 1996) 2nd ed., p. 329-345.