| 研究生: |
莊渝涵 Yu-Han Jhuang |
|---|---|
| 論文名稱: |
在PU類型資料之下比較三種邏輯斯迴歸模型 A Comparison among Three Logistic Regression Models under Positive and Unlabeled Data |
| 指導教授: | 黃世豪 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 邏輯斯迴歸 、錯標機制 、參數估計 、PU類型資料 、穩健估計 |
| 外文關鍵詞: | Logistic regression, Mislabeling mechanism, Parameter estimation, Positive and unlabeled data, Robust estimation |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大數據時代的來臨,我們常面臨資料的標記品質不佳的情況。在傳統監督學習的二分類問題中,資料中含有部分的錯誤標記導致其訓練出的模型產生偏差。其中有一種含有錯誤標記的資料類型為僅含有正確標記的正標籤(positive)資料以及混雜大量負標籤(negative)及少量正標籤的未標記(unlabeled)資料,簡稱PU類型資料。在本文中我們比較文獻中所提出的三種邏輯斯迴歸的變型,分別是c-邏輯斯迴歸、ξ-邏輯斯迴歸以及γ-邏輯斯迴歸在PU類型資料的表現。我們藉由模擬實驗來比較這三種方法在PU類型資料下的參數估計準確性及分類正確性。實際資料分析使用UCI Machine Learning Repository中的兩筆資料集,分別是Wisconsin乳癌的資料集(WDBC)和Pima Indians糖尿病的資料集(Pima)。
With the advent of the big data era, we often face the situation of poor quality of labeling the data. In binary classification problems of traditional supervised learning, mislabeled in data leads to a model bias issues. One type of mislabeled data is which contains correctly labeled of positive data and unlabeled ones which mixed with a large number of negative data and a small number of positive data, referred to as positive and unlabeled data. In this article, we compare the three logistic regression variants proposed in the literature, namely c-logistic regression, ξ-logistic regression and γ-logistic regression on positive and unlabeled data. We compare the parameter estimation accuracies and classification correct rates of these three methods under positive and unlabeled data by simulation experiments. For real-world applications, we supply the three methods on the two datasets, WDBC (breast cancer Wisconsin (diagnostic)) data set and PIMA (Pima Indians diabetes) data set in the UCI Machine Learning Repository.
1.Copas, J. B. (1988). Binary regression models for contaminated data. Journal of the Royal Statistical Society, Series B, 50(2), 225-253.
2.Deloach, J., Caragea, D., Ou, X. (2016). Android malware detection with weak ground truth data. In 2016 IEEE International Conference on Big Data, 3457-3464.
3.Fujisawa, H., and Eguchi, S. (2008). Robust parameter estimation with a small bias against heavy contamination. Journal of Multivariate Analysis, 99(9), 2053-2081.
4.Hayashi, K. (2012). A boosting method with asymmetric mislabeling probabilities which depend on covariates. Computational Statistics, 27(2), 203-218.
5.Hung, H., Jou, Z.Y., and Huang, S.Y. (2018). Robust mislabel logistic regression without modeling mislabel probabilities. Biometrics, 74(1), 145-154.
6.Jones, M. C., Hjort, N. L., Harris, I. R. and Basu, A. (2001). A comparison of related density-based minimum divergence estimators. Biometrika, 88(3), 865–873.
7.Komori, O., Eguchi, S., Ikeda, S., Okamura, H., Ichinokawa, M., and Nakayama, S. (2016). An asymmetric logistic regression model for ecological data. Methods in Ecology and Evolution, 7(2), 249-260.
8.Mollah, M. N. H., Eguchi, S., and Minami, M. (2007). Robust prewhitening for ICA by minimizing $\beta$-divergence and its application to FastICA. Neural Processing Letters, 25(2), 91-110.
9.Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., and Johannes, R. S. (1988). Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. Proceedings of the annual symposium on computer application in medical care, 261-265.
10.Wang, H., Zhu, R., and Ma, P. (2018). Optimal subsampling for large sample logistic regression. Journal of the American Statistical Association, 113(522), 829-844.
11.Yang, P., Liu, W., and Yang, J. Y. H. (2017). Positive unlabeled learning via wrapper-based adaptive sampling. International Joint Conference on Artificial Intelligence, 3273-3279.
12.衛生福利部 慢性疾病防治組(2019). 響應2019年世界糖尿病日 全家齊控糖 糖友「好家在」. Retrieved 2021/07/07, from https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=3804&pid=11765.
13.衛生福利部 癌症防治組(2020). 衛生福利部公布癌症發生資料. Retrieved 2021/07/07, from https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=4141&pid=12682.