| 研究生: |
葉善茹 Shan-ju Yeh |
|---|---|
| 論文名稱: |
不確定性Takagi-Sugeno模糊系統之觀察器與控制器合成設計 Observer and controller synthesis for uncertain T-S fuzzy systems |
| 指導教授: |
王文俊
Wen-june Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | T-S 模糊系統 、觀察器 、控制器 |
| 外文關鍵詞: | T-S fuzzy systems, observer, controller |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文對不確定性模糊系統討論了觀察器與基於觀察器下的強健控制器合成設計,文章中所討論的觀察器與基於觀察器下的強健控制器設計方法都是基於Takagi-Sugeno (T-S) 模糊系統。首先,在第二章我們引用了未知輸入設計概念與選擇設計動態觀察器模型而不是古典的觀察器模型,同時,藉由廣義反矩陣的輔助求出系統設計參數,並且由李亞普諾夫函數(Lyapunov function)推導出能使估測誤差收斂到零的條件,上述條件最後是線性矩陣不等式的型態,可由軟體工具快速有效的找出最佳解,最後,數値範例證實了文章中所提出的模糊觀察器設計方法,在有擾動環境下仍然有很好的表現。
另一個在論文中被討論的問題是對於不確定性T-S模糊系統做基於觀察器下的強健控制。在很多真實實驗中並不是所有狀態都可以量測得到,因此,在第三章中提出了基於觀察器下的強健性控制器合成方法。根據文獻指出,對於不確定性模糊系統所做的觀察器與控制器設計普遍會遇到兩個問題。第一個問題是所得到的穩定條件是雙線性矩陣不等式(Bilinear Matrix Inequalities: BMIs),其型態無法運用現有的MATLAB Linear Matrix Inequality (LMI) 工具求最佳解,第二個問題是穩定條件有交叉偶合(cross-coupled)項,其需要用兩步驟求解法,上述的求解方法將會增加解的保守性。第三章提出的設計方法解決了以上兩個問題,達到狀態估測並回授控制器完成系統穩定之目的。最後,模擬結果展現了我們設計的觀察器與控制器是有效的。
The thesis proposes the observer and robust observer-based controller synthesis for uncertain Takagi-Sugeno (T-S) fuzzy systems. At first, in Chapter 2, we introduce unknown input concept and choose to design dynamic observer instead of classical observer. In the meantime, designed system parameters are found with the aid of generalized inverse. Moreover, based on the Lyapunov theory, sufficient conditions making estimated errors converge to zero are derived in the form of linear matrix inequalities (LMIs). Feasible solutions can be found by MATLAB LMI tool box efficiently. Finally, a numerical example is given to substantiate the performance of fuzzy observer under the environment with uncertainties as expected.
The other problem discussed in this thesis is the robust observer-based control for the uncertain T-S fuzzy system. It is known that, in many practical experiments, not all of the system states can be measured. Hence, in Chapter 3, we develop a design method of robust observer-based controller for T-S fuzzy systems. According to the survey of related papers, there are two common problems we will face when designing observer and controller for uncertain fuzzy systems. The first problem is that sufficient conditions we obtain are in the form of bilinear matrix inequalities (BMIs) which could not be solved easily. The second problem is that there are cross-coupled terms in the sufficient conditions having to be solved by two-stage procedure which will enhance the conservatism of the result. In Chapter 3, the proposed method is capable of overcoming previous mentioned two problems. Estimated system states feedback to the controller so that the stability of the system is achieved. Consequently, the results of simulation show that synthesized fuzzy observer and robust observer-based controller work effectively.
[1] K. J. Ma, Z. Q. Sun, and Y. Y. He, “Analysis and design of fuzzy controller and fuzzy observer,” IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 41-51, 1998.
[2] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: Relaxed stability condition and LMI-based designs,” IEEE Trans. Fuzzy Syst., vol. 6, no. 2, pp. 250-265, 1998.
[3] P. Korba, R. Babuska, H. B. Verbruggen, and P. M. Frank, “Fuzzy gain scheduling: Controller and observer design based on Lyaponov method and convex optimization,” IEEE Trans. Fuzzy Syst., vol. 11, no. 3, pp. 285-298, 2003.
[4] D. W. Gu, and F. W. Poon, “A robust state observer scheme,” IEEE Trans. Autom. Control, vol. 46, no. 12, pp. 1958-1963, 2001.
[5] A. Akhenak, M. Chadli, J. Ragot, and D. Maquin, “Design of robust observer for uncertain takagi-sugeno models,” Proc. Fuzzy Sys., Budapest, Hungary, pp. 1327-1330, July 2004.
[6] W. Chen, and M. Saif, “Unknown input observer design for a class of nonlinear systems: an LMI approach,” Proc. Am. Control Conf., Minneapolis, Minnesota, USA, Jun. 2006.
[7] S. Mondal, G. Chakraborty, and K. Bhattacharyya, “LMI approach to robust unknown input observer design for continuous systems with noise and uncertainties,” Proc. Int. J. Control Automa. Syst., Korea, pp. 210-219, 2010.
[8] G. Feng, “A survey on analysis and design of model-based fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 14, no. 5, pp.676-697, 2006.
[9] K. Tanaka, and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, New York: Wiley, 2001.
[10] H. K. Lam, H. Li, and H. Liu, “Stability analysis and control synthesis for fuzzy-observer-based controller of nonlinear systems: a fuzzy-model-based control approach,” IET Control Theory Appl., vol. 7, no. 5, pp. 663-672, 2013.
[11] T. Taniguchi, K. Tanaka, and H. O. Wang, “Fuzzy descriptor systems and nonlinear model following control,” IEEE Trans. Fuzzy Syst., vol. 8, no. 4, pp. 442-452, 2000.
[12] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 14-23, 1996.
[13] T. Takagi, and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. Syst. Man Cybern., vol. 15, no. 1, pp. 116-132, 1985.
[14] T.V. Dang, W. J. Wang, L. Luoh, and C. H. Sun, “Adaptive observer design for the uncertain takagi-sugeno fuzzy system with output disturbance,” IET Contr. Theory Appl., vol. 6, no. 10, pp. 1351-1366, 2012.
[15] P. Bergsten, R. Palm, and D. Driankov, “Observers for takagi–sugeno fuzzy systems,” IEEE Trans. Syst. Man Cybern. Part B-Cybern., vol. 32, no. 1, pp. 114-121, 2002.
[16] H. H. Choi, and K. S. Ro, “LMI-based sliding-mode observer design method,” Proc. Inst. Elect. Eng. Contr. Theory Appl., vol. 152, no. 1, pp. 113-115, 2005.
[17] H. H. Choi, “LMI-based nonlinear fuzzy observer-controller design for uncertain mimo nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 15, no. 5, pp. 956-971, 2007.
[18] T. V. Dang, W. J. Wang, C. H. Huang, C. H. Sun, and L. Luoh, “Observer synthesis for the T-S fuzzy system with uncertainty and output disturbance,” J. Intell. Fuzzy Syst., vol. 22, no. 4, pp. 173-183, 2011.
[19] M. Chadli, and H. R. Karimi, “Robust observer design for unknown inputs takagi-sugeno models,” IEEE Trans. Fuzzy Syst., vol. 21, no. 1, pp. 158-164, 2013.
[20] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 14-23, 1996.
[21] X. J. Ma, Z. Q. Sun, and Y. Y. He, “Analysis and design of fuzzy controller and fuzzy observer,” IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 41-51, 1998.
[22] Z. H. Xiu, and G. Ren, “Stability analysis and systematic design of takagi-sugeno fuzzy control systems,” Fuzzy Sets Syst., vol. 151, no. 1, pp. 119-138, 2005.
[23] H. Lu, X. Huang, X. Z. Gao, X. Ban, and H. Yin, “Stability analysis of the simplest takagi-sugeno fuzzy control system using circle criterion,” J. Syst. Eng. Electron., vol. 18, no. 2, pp. 311-319, 2007.
[24] S. T. Zhang and S. J. Wang, “Stability analysis of discrete T-S fuzzy systems,” in Proc. 2008 Control Decis. Conf., China, July, 2008, pp. 2045-2048.
[25] H. K. Lam, F. H. F. Leung, and P. K. S. Tam, “Stable and robust fuzzy control for uncertain nonlinear systems,” IEEE Trans. Syst. Man Cybern. Part A-Syst. Hum., vol. 30, no. 6, pp. 825-840, 2000.
[26] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy controller,” Int. J. Man-Mach. Stud., vol. 7, pp. 1-13, 1975.
[27] R. M. Tong, M. Beck, and A. Latten, “Fuzzy control of the activated sludge wastewater treatment process,” Automatica, vol. 16, no. 6, pp.695-701, 1980.
[28] E. Kim, “A new computational approach to stability analysis and synthesis of linguistic fuzzy control system,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 379-388, 2004.
[29] H. A. Malki, H. Li, and G. Chen, “New design and stability analysis of fuzzy proportional-derivative control systems,” IEEE Trans. Fuzzy Syst., vol. 2, no. 4, pp. 245-253, 1994.
[30] D. Misir, H. A. Malki, and G. Chen, “Design and analysis of a fuzzy proportional-integral-derivative controller,” Fuzzy sets Syst., vol. 79, pp.297-314, 1996.
[31] H. O. Wang, K. Tanaka, and M. F. Griffin, “Parallel distributed compensation of nonlinear systems by takagi-sugeno fuzzy model,” in Proc. Fuzzy Syst., Yokohama, Mar. 1995, pp. 531-538.
[32] H. O. Wang, K. Tanaka, and M. F. Griffin, “An analytical framework of fuzzy modeling and control of nonlinear systems: stability and design issues,” in Proc. Am. Control Conf., Seattle, Jun. 1995, pp.2272-2276.
[33] B. S. Chen, C. S. Tseng, and H. J. Uang, “Mixed H2/H fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach,” IEEE Trans. Fuzzy syst., vol. 8, no. 3, pp. 249-265, 2000.
[34] H. D. Tuan, P. Apkarian, T. Narikiyo, and M. Kanota, “New fuzzy control model and dynamic output feedback parallel distributed compensation,” IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 13-21, 2004.
[35] K. Y. Lian and J. J. Liou, “Output tracking control for fuzzy systems via output feedback design,” IEEE Trans. Fuzzy Syst., vol. 14, no. 5, pp. 628-639, 2006.
[36] C. S. Tseng, B. S. Chen, and H. J. Uang, “Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model,” IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 381-392, 2001.
[37] C. S. Tseng and B. S. Chen, “ decentralized fuzzy model reference tracking control design for nonlinear interconnected systems,” IEEE Trans. Fuzzy Syst., vol. 9, no. 6, pp. 795-809, 2001.
[38] H. K. Lam, H. Li, and H. Liu, “Stability analysis and control synthesis for fuzzy-observer-based controller of nonlinear systems: a fuzzy-model-based control approach,” IET Control Theory Appl., vol. 7, pp. 663-672, 2013.
[39] B. S. Chen, C. S. Tseng, and H. J. Uang, “Robustness design of nonlinear dynamic systems via fuzzy linear control,” IEEE Trans. Fuzzy Syst., vol. 7, no. 5, pp. 571-585, 1999.
[40] S. Tong, T. Wang, and H. X. Li, “Fuzzy robust tracking control for uncertain nonlinear systems,” Int. J. Approx. Reasoning, vol. 30, pp. 73-90, 2002.
[41] A. Golabi, M. Beheshti, and M. H. Asemani,“ robust fuzzy dynamic observer-based controller for uncertain takagi-sugeno fuzzy systems,” IET Control Theory Appl., vol. 6, pp. 1434-1444, 2012.
[42] A. S. Tlili, N. B. Braiek, “Systematic linear matrix inequality conditions to design a robust decentralized observer-based optimal control for interconnected systems,” IET Control Theory Appl., vol. 6, pp. 2737-2747, 2012.
[43] M. Darouach, M. Zasadzinski, and S. J. Xu, “Full-order observers for linear systems with unknown inputs,” IEEE Trans. Autom. Control, vol. 39, no. 3, pp. 606-609, 1994.
[44] F. Yang, and R. W. Wilde, “Observers for linear systems with unknown inputs,” IEEE Trans. Autom. Control, vol. 33, no. 7, pp. 677-681, 1988.
[45] B. Sfaihi, and O. Boubaker, “Full order observer design for linear systems with unknown inputs,” Proc. Int. Conf. Ind. Technol., Tunisia, pp. 1233-1238, Dec. 2004.
[46] N. Bouguila, W. Jamel, A. Khedher, and K. B. Othman, “Multiple observer design for a nonlinear takagi-sugeno system submitted to unknown inputs and outputs,” IET Signal Process., vol. 7, no. 8, pp. 635-645, 2013.
[47] S. Hui, and S. H. Zak, “Observer design for systems with unknown inputs,” Int. J. Appl. Math. Comput. Sci., vol. 15, no. 4, pp. 431-446, 2005.
[48] J. Zarei, and S. Ahmadizadeh, “LMI-based unknown input observer design for fault detection,” Proc. Int. Conf. Control Instrum. Automat., Shiraz, pp. 1130-1135, Dec. 2011.
[49] J. C. Lo, M. L. Lin, “Observer-based robust control for fuzzy systems using two-step procedure,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 350-359, 2004.
[50] M. Chadli and A. E. Hajjaji, “Comment on : observer-based robust fuzzy control of nonlinear systems with parametric uncertainties,” Fuzzy Sets Syst., vol. 157, pp.1276-1281, 2006.
[51] D. G. Luenberger, “An Introduction to Observers,” IEEE Trans. Autom. Control, vol. 16, no. 6 pp. 596-602, 1971.
[52] E. M. Jafarov, “Robust Coupling Linear State Observer-Controller Design for MIMO Systems with Mismatched and Unstructured Uncertainties,” Online J. Electron. Electr. Eng., vol. 2, no. 1, pp.155-158, 2010.
[53] R. Penrose, “A generalized inverse for matrices,” Proc. Math. Camb. Philos. Soc., vol. 51, pp. 406-413, 1955.
[54] Z. Gao, X. Shi, and S. X. Ding, “Fuzzy state/disturbance observer design for T-S fuzzy systems with application to sensor fault estimation,” IEEE Trans. Syst. Man Cybern. Part B-Cybern., vol. 38, no. 3, pp. 875-880, 2008.