跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳揚仁
Yang-Zen Chen
論文名稱: 基於零相關門檻之全球導航衛星系統快速載波相位求解
Fast Carrier-Phase Resolution in GNSS Based on ZEro-correlation Transformation/Threshold for Ambiguity-resolution
指導教授: 吳究
Joz Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 130
中文關鍵詞: 相位模稜解相關零相關門檻域部分模稜求解
外文關鍵詞: phase ambiguity, decorrelation, zero correlation, threshold domain, partial ambiguity resolution
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高精度全球導航衛星系統運用的關鍵在於如何正確及有效率地求解整數相位模稜。
    模稜搜尋與解相關技術是解決模稜求解問題的方法之一。傳統上,解相關技術所使用的轉換矩陣其元素的整數限制可確保逆轉換後的候選解仍能保持整數性。但是這限制同樣也使得解相關難以完美。
    使用實數轉換矩陣可得到零相關也就是完全對角線化的協方差矩陣。在這新域中的一個空間可用做為門檻,因此這零相關域亦被稱為門檻域。使用本研究所提出之ZETA方法,來自傳統整數轉換所得的候選解數量能夠再次減少。
    使用ZETA時,有可能會發生候選解全部遭到剔除而造成無解的情況。本研究使用部分模稜求解處理這情況。部分模稜求解允許將部分的相位模稜做為實數未知進行求解。透過將部分相位模稜求解為實數,候選解將能夠更容易地通過門檻。
    實驗顯示本研究所提出之方法能夠在不降低成果精度的情形下,提升演算效率,且模稜求解求解成功率亦能獲得提升。


    The key point of accurate and precise application of Global Navigation Satellite Systems is how to obtain integer carrier phase ambiguity correctly and efficiently.
    One of the ways to solve the ambiguity resolution problem is ambiguity searching technique with an ambiguity decorrelation technique. Traditionally, an integer-valued limitation of the transformation matrix of decorrelation technique ensures the integer characteristic of candidates existing after the inverse transformation, but it also makes the decorrelation imperfect.
    A zero correlation domain or a complete diagonalization covariance matrix could be obtained by the using float transformation matrix. A space in this domain will be used as a threshold, hence the zero correlation domain is called threshold domain. The number of ambiguity candidates based on integer transformation could be reduced through the proposed ZETA method.
    ZETA might reject all of candidates and make the ambiguity resolution being no solution. In this research, the partial ambiguity resolution is used to cope with this situation. Partial ambiguity resolution allows some of the resolved of ambiguities to be float-valued ones. A candidate will be easier to pass the threshold with some of ambiguities being solved as float solutions.
    The experiments in this paper prove that the method could make the ambiguity resolution become more efficient without decreasing the accuracy. The success rate could also be improved by proposed method.

    List of figures VI List of tables VIII List of abbreviations XI Chapter 1 Introduction 1 1.1 Motivation 2 1.2 Thesis organization 3 Chapter 2 Literature review 4 Chapter 3 Global navigation satellite systems 7 3.1 GNSS projects 7 3.1.1 GPS 7 3.1.2 GLONASS 8 3.2 GNSS observation 9 3.2.3 Pseudorange 10 3.2.4 Carrier phase 12 3.3 Source of errors 14 3.3.1 Satellite 14 3.3.2 Signal propagation 15 3.3.3 Receiver 16 3.4 Differential positioning 17 3.4.1 Single differences 17 3.4.2 Double differences 18 3.5 Linear combinations 20 3.5.1 Wide lane linear combination 20 3.5.2 Ionosphere free linear combination 21 3.6 Atmosphere correction 22 3.6.1 Ionospheric delay correction 22 3.6.2 Tropospheric delay correction 24 3.7 Adjustment model 26 Chapter 4 Ambiguity resolution 28 4.1 Phase ambiguity 28 4.2 Ambiguity function method 29 4.3 Ambiguity searching technique 30 4.4 Fisher test 34 Chapter 5 Integer decorrelation and search domain 36 5.1 Matrix decomposition 38 5.1.1 Crout decomposition 39 5.1.2 Cholesky decomposition 41 5.2 LLL algorithm 42 5.3 Whitening filter 47 Chapter 6 Float transformation and threshold domain 50 6.1 ZETA 50 6.2 Threshold domain 53 6.3 Partial ambiguity resolution 57 Chapter 7 Experiments 60 7.1 Background of data 60 7.2 Results and analyses of experiments 60 7.2.1 Baseline SPP0−MUST 62 7.2.2 Baseline SPP0−TCYU 69 7.2.3 Baseline SPP0−NTPU 75 7.2.4 Baseline SPP0−HSR2 80 7.2.5 Baseline SPP0−CSRF 86 7.2.6 Baseline SPP0−YILN 91 7.2.7 Baseline SPP0−ST55 96 7.3 Summary of experiments 101 Chapter 8 Summary and Conclusions 104 References 107

    Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research 97(D14): 15787−15801. doi: 10.1029/92JD01517
    Bock H, Dach R, Jäggi A, Beutler G (2009) High-rate GPS clock corrections from CODE: support of 1 Hz applications. Journal of Geodesy 83(11): 1083–1094. doi: 10.1007/s00190-009-0326-1
    Cellmer S, Wielgosz P, Rzepecka Z (2010) Modified ambiguity function approach for GPS carrier phase positioning. Journal of Geodesy 84(4): 267–275. doi: 10.1007/s00190-009-0364-8
    Chan WS, Xu YL, Ding XL, Dai WJ (2006) An integrated GPS accelerometer data processing technique for structural deformation monitoring. Journal of Geodesy 80(12):705–719. doi: 10.1007/s00190-006-0092-2
    Chen YZ, Wu J (2013) Zero-correlation transformation and threshold for efficient GNSS carrier phase ambiguity resolution. Journal of Geodesy 87(10–12): 971–979. doi: 10.1007/s00190-013-0661-0
    Counselman CC, Gourevitch SA (1981) Miniature interferometer terminals for earth surveying: ambiguity and multipath with global positioning system. IEEE Transactions on Geoscience and Remote Sensing GE-19(4): 244–252. doi: 10.1109/TGRS.1981.350379
    Diessongo TH, Schüler T, Junker S (2014) Precise position determination using a Galileo E5 single-frequency receiver. GPS solutions 18(1): 73–83. doi: 10.1007/s10291-013-0311-2
    Fernández-Plazaola U, Martín-Guerrero TM, Entrambasaguas JT (2008) A new method for three-carrier GNSS ambiguity resolution. Journal of Geodesy 82(4–5): 269–278. doi: 10.1007/s00190-007-0177-6
    Goad CC, Yang M (1997) A new approach to precision airborne GPS positioning for photogrammetry. Photogrammetric engineering and remote sensing 63(9): 1067–1077.
    Grafarend EW (2000) Mixed integer-real valued adjustment (IRA) problems: GPS initial cycle ambiguity resolution by means of the LLL algorithm. GPS Solutions 4(2): 31–44. doi: 10.1007/PL00012840
    Grafarend EW, Krumm FW, Schwarze VS (2003) Geodesy-The Challenge of the 3rd Millennium. Springer, Berlin Heidelberg.
    Golub GH, Van Loan CF (1989) Matrix Computations, 2nd edn. Johns Hopkins University Press, Baltimore.
    Hassibi A, Boyd S (1998) Integer parameter estimation in linear models with applications to GPS. IEEE Transactions on Signal Processing, Vol.46, pp.2938–2952. doi: 10.1109/78.726808
    Hauschild A, Montenbruck O (2009) Kalman-filter-based GPS clock estimation for near real-time positioning. GPS Solutions 13(3): 173–182. doi: 10.1007/s10291-008-0110-3
    Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS−Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer, Wien.
    Hu G, Abbey DA, Castleden N, Featherstone WE, Earls C, Ovstedal O, Weihing D (2005) An approach for instantaneous ambiguity resolution for medium- to long-range multiple reference station networks. GPS Solutions 9(1): 1−11. doi: 10.1007/s10291-004-0120-8
    Janes HW, Langley RB, Newby SP (1991) Analysis of tropospheric delay prediction models: comparisons with ray-tracing and implications for GPS relative positioning. Bulletin Géodésique 65(3): 151–161. doi: 10.1007/BF00806344
    Joosten P, Tiberius C (2000) Fixing the ambiguities, are you sure they’re right?. GPS World 11(5): 46–51.
    Klobuchar JA (1987) Ionospheric time-delay algorithm for single−frequency GPS users. IEEE Transactions on Aerospace and Electronic Systems AES-23(3): 325−331. doi: 10.1109/TAES.1987.310829
    Leick A (2004) GPS Satellite Surveying, 3rd edn. John Wiley & Sons, Inc., Hoboken.
    Lenstra AK, Lenstra HW, Lovász L (1982) Factoring polynomials with rational coefficients. Mathematische Annalen 261: 515−534. doi: 10.1007/BF01457454
    Liu LT, Hsu HT, Zhu YZ, Ou JK (1999) A new approach to GPS ambiguity decorrelation. Journal of Geodey 73(9): 478−490. doi: 10.1007/PL00004003
    Lovse JW, Teskey WF, Lachapelle G, Cannon ME (1995) Dynamic deformation monitoring of tall structure using GPS technology. Journal of Surveying Engineering 121(1): 35–40. doi: 10.1061/(ASCE)0733-9453(1995)121:1(35)
    Meng X, Roberts GW, Dodson AH, Cosser E, Barnes J, Rizos C (2004) Impact of GPS satellite and pseudolite geometry on structural deformation monitoring: analytical and empirical studies. Journal of Geodesy 77(12): 809–822. doi: 10.1007/s00190-003-0357-y
    Mohamed AH, Schwarz KP (1998) A simple and economical algorithm for GPS ambiguity resolution on the Fly Using a Whitening Filter. Navigation 45(3): 221–231.
    Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS solutions 17(2): 211–222. doi: 10.1007/s10291-012-0272-x
    Mowlam A, Collier P (2004) Fast ambiguity resolution performance using partially-fixed multi-GNSS phase observations. In: Paper presented at the 2004 International Symposium on GNSS/GPS, Sydney, Australia, 6–8 December.
    Nakamura S (2000) GPS measurement of wind-induced suspension bridge girder displacements. Journal of Structural Engineering 126(12): 1413–1419. doi: 10.1061/(ASCE)0733-9445(2000)126:12(1413)
    Parkins A (2011) Increasing GNSS RTK availability with a new single-epoch batch partial ambiguity resolution algorithm. GPS Solutions 15(4): 391−402. doi: 10.1007/s10291-010-0198-0
    Psimoulis P, Pytharouli S, Karambalis D, Stiros S (2008) Potential of Global Positioning System (GPS) to measure frequencies of oscillations of engineering structures. Journal of Sound and Vibration 318(3): 606–623. doi:10.1016/j.jsv.2008.04.036
    Ray JK, Cannon ME, Fenton P (2001) GPS code and carrier multipath mitigation using a multi-antenna system. IEEE Transactions on Aerospace and Electronic Systems 37(1): 183−195. doi: 10.1109/7.913677
    Remondi BW (1991) Pseudo-kinematic GPS results using the ambiguity function method. Navigation 38(1): 17–36
    Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Bulletin Géodésique 107(1): 13–34. doi: 10.1007/BF02522083
    Santerre R, Beutler G (1993) A proposed GPS method with multi-antennae and single receiver. Bulletin Géodésique 67(4): 210–223. doi: 10.1007/BF00806250
    Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy 70(1–2): 65–82. doi: 10.1007/BF00863419
    Teunissen PJG, de Jonge PJ, Tiberius CCJM (1997) Performance of the LAMBDA method for fast GPS ambiguity resolution. Navigation 44(3): 373–383
    Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. Journal of Geodesy 72(10): 606–612. doi: 10.1007/s001900050199
    Teunissen PJG (1999) An optimality property of the integer least-squares estimator. Journal of Geodesy 73(11): 587–593. doi: 10.1007/s001900050269
    Teunissen P, Joosten P, Tiberius C (1999) Geometry-free ambiguity success rates in case of partial fixing. In: Paper presented at the 1999 National Technical Meeting of The Institute of Navigation, San Diego, CA, 25–27 January.
    Teunissen PJG (2007) Influence of ambiguity precision on the success rate of GNSS integer ambiguity bootstrapping. Journal of Geodesy 81(5): 351–358. doi: 10.1007/s00190-006-0111-3

    Weinbach U, Schön S (2011) GNSS receiver clock modeling when using high-precision oscillators and its impact on PPP. Advances in Space Research 47(2): 229–238. doi: 10.1016/j.asr.2010.06.031
    Wells D, Beck N, Delikaraoglou D, Kleusberg A, Krakiwsky EJ, Lachapelle G, Langlet RB, Nakiboglu M, Schwarz KP, Tranquilla JM, Vanicek P (1986) Guide to GPS Positioning. Canadian GPS Associates, Fredericton.
    Wu J, Hsieh CH (2010) Statistical modeling for the mitigation of GPS multipath delays from day-to-day range measurements. Journal of Geodesy 84(4): 223−232. doi: 10.1007/s00190-009-0358-6
    Xia L (2004) Multipath in GPS navigation and positioning. GPS Solutions 8(1): 49–50. doi: 10.1007/s10291-004-0085-7
    Xu PL (2001) Random simulation and GPS decorrelation. Journal of Geodesy 75(7–8): 408–423. doi: 10.1007/978-3-662-05296-9_43
    Xu PL (2012) Parallel Cholesky-based reduction for the weighted integer least squares problem. Journal of Geodesy 86(1): 35–52. doi: 10.1007/s00190-011-0490-y
    Zhong P, Ding X, Yuan L, Xu Y, Kwok K, Chen Y (2010) Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines. Journal of Geodesy 84(2): 145–158. doi: 10.1007/s00190-009-0352-z

    QR CODE
    :::