跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳御穎
Yu-Ying Wu
論文名稱: 嵌入不同團聯共聚物之黏土複合材料其吸持特性研究
Absorption Characteristics of Clay Composites Modified by Different Block Copolymers
指導教授: 李俊福
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 133
中文關鍵詞: 團聯共聚物改質土壤無機污染物BTEX
外文關鍵詞: Block copolymer, Modified clay, Cu2+ Pb2+ Cr2O72-, BTEX
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 天然土壤由於表面帶有負電荷,對陽離子重金屬具有親和力,而對於有機污染物,通常因有機質含量過少,導致吸持效果不佳,無法同時對有機與無機污染物兼具吸持性。近年來,團聯共聚物之相關研究蓬勃發展,被廣泛應用於奈米材料產業,因此本研究將三種團聯共聚物嵌入高嶺石、伊萊石、鈣蒙特石進行改質,製備出黏土奈米複合材料,探討改質效果及對非離子、陰離子、陽離子污染物的吸持能力。
    由土壤的特性鑑定發現,三種土壤改質後的有機碳含量皆高於改質前的土壤,透過FTIR的分析圖譜確認,改質土壤表面含有團聯共聚物上具備的特殊官能基,而從X光繞射分析得知每種改質土壤層隙間距皆有所提高,最後由ASAP分析得知土壤改質後其比表面積減少、孔洞大小增加,證實團聯共聚物已成功嵌入土壤中。
    改質土壤於BTEX的吸持結果,可發現雖然有土壤機質含量提高,但因改質劑結構性質的影響,而使吸持效果有所差異,也可看出分佈常數(Kd)與有機碳含量確實有相關性,且經校正後得log Kom值皆大於文獻值。對無機污染物吸附的結果,可看出帶有羧基的改質土壤,在鹼性條件下對Cu2+及Pb2+有最高的吸附量;帶有胺基的改質土壤,在酸性條件下對Cr2O72-有最高的吸附量;同時帶有羧基及胺基的改質土壤對陰、陽離子的吸附量皆居中,而每種改質土壤對無機污染物的吸附量皆高於文獻中的天然土壤。綜合有機分佈與無機吸附實驗的結果,證實本研究之團聯共聚物改質土壤,可同時對非離子(BTEX)、陽離子(Cu2+、Pb2+)、陰離子(Cr2O72-)污染物兼具親和力。


    The natural soil possesses negatively charged and has high affinity for metal cations. But for the nonionic organic contaminats, due to lack of organic matters content, the capacity of partitioning is not effectively. Thus, the natural soil is not effective for the simultaneous removal of both organic and inorganic contaminats. In recent years, the researches of block copolymer are developed and have been widely applied on nanomaterial. Therefore, in this study, we use kaolinite, illite and Ca-montmorillonite which are intercalated diblock copolymer and tribiock copolymer separately to prepare clay-composite materials. Exploring the adsortion capacity of these clay-composite materials for noionic, cation and anion contaminats.
    From the characterization analysis of the clay-composite materials, we found that the organic carbon content of these three soils was higher than that before been modified. The FTIR analysis, the spectrum showed that the modified clay suface contained the specific functional group of the block copolymer. As for the X-ray diffraction (XRD) technique was applied to reveal intercalated materials in the layer, which provides informations on layered structure and the basal spacing. The results showed that the basal spacing of the modified clays all increased and the increased degree was mainly dependent on the molecular weight and intercalated amount of the block copolymer. Finally, the ASAP analysis showed that the specific surface area decreased and the pore size increased after soil modification. These analytical data comfirmed that the block copolymer has been intercalated into the inter-layer of soil successfully.

    The BTEX experimental results showed that although the modified clay organic matter content is increased, due to the structural properties of the modifier, the partitioning effect was defferent. Simultaneously, it can been observed that the partition coefficient (Kd) was indeed related to the organic matter content. Comparing to the literatures, the modified clay of this study possesses better distribution ability and higher log Kom values. The adsorption experiment of inorganic contaminats (Cu2+, Pb2+, Cr2O72-) showed that the modified clay with carboxyl group has the highest adsorption capacity for Cu2+ and Pb2+ under alkaline conditions. The modified clay with amine group has the highest adsorption capacity for Cr2O72- under acidic conditions. The modified clay with both carboxyl and amine group have the middle adsorption capacity for cation and anion contaminats. The adsorption capacity of inorganic contaminats adsorbed by each modified soil is higher than natural soil of the literature. Eventually, the results of comprehensive organic partitioning and inorganic adsorption experiments confirmed that the modified clay with block copolymer of this study provide the affinity of nonionic (BTEX), cation (Cu2+, Pb2+), anion (Cr2O72-) contaminats.

    目錄 …………………………………………………………………I 圖目錄 …………………………………………………………………IV 表目錄 …………………………………………………………………XI 第一章 研究緣起與目的……………………………………………1 1-1 研究緣起…………………………………………………………1 1-2 研究目的與內容……………………………………………3 第二章 文獻回顧…………………………………………………………4 2-1 土壤特性…………………………………………………………4 2-1-1 土壤基本性質…………………………………………………4 2-1-2 土壤無機相………………………………………………………4 2-1-3 土壤有機質………………………………………………………5 2-1-4 土壤陽離子交換容量……………………………………7 2-1-5 層狀矽酸鹽材料……………………………………………7 2-2 土壤對污染物之吸持作用……………………………9 2-2-1 土壤無機相吸附………………………………………………9 2-2-2 土壤有機質之兩相分佈作用…………………………9 2-2-3 土壤之分佈常數…………………………………………………12 2-3 吸附理論………………………………………………………………13 2-3-1 等溫吸附曲線………………………………………………………13 2-3-2 等溫吸附模式………………………………………………………15 2-4 團聯共聚物……………………………………………………………18 2-4-1 團聯共聚物基本性質…………………………………………18 2-4-2 pH值對團聯共聚物的微胞化影響…………………21 2-4-3 團聯共聚物之合成………………………………………………24 2-5 團聯共聚物於高分子材料之反應機制…………29 2-5-1 層狀黏土之分散型態…………………………………………28 2-5-2 團聯共聚物於黏土間隙之作用機制………………30 2-5-3 團聯共聚物於層狀黏土間隙之嵌入方法………31 第三章 研究方法……………………………………………………………………34 3-1 研究內容與流程………………………………………………………34 3-2 實驗設備與儀器………………………………………………………36 3-2-1 實驗設備……………………………………………………………………36 3-2-2 實驗儀器……………………………………………………………………37 3-3 實驗材料……………………………………………………………………41 3-3-1 不含有機質土壤………………………………………………………41 3-3-2 團聯共聚物………………………………………………………………41 3-3-3 非離子性有機污染物……………………………………………43 3-3-4 重金屬標準品…………………………………………………………43 3-3-5 溶劑……………………………………………………………………………44 3-4 實驗方法……………………………………………………………………46 3-4-1 改質土壤之製備……………………………………………………45 3-4-2 團聯共聚物合成實驗……………………………………………45 3-4-3 改質土壤對污染物之吸持實驗…………………………48 第四章 結果與討論………………………………………………………………50 4-1 團聯共聚物之特性分析………………………………………50 4-1-1 團聯共聚物之基本性質………………………………………50 4-1-2 自行合成之三團聯共聚物GPC分子量分析……51 4-2 黏土材料之特性分析……………………………………………53 4-2-1 有機碳含量測定(TOC)……………………………………54 4-2-2 穿透式電子顯微鏡(TEM)………………………………56 4-2-3 傅立葉轉換紅外線光譜分析(FTIR)…………60 4-2-4 X光繞射分析(XRD)……………………………………………64 4-2-5 比表面積、平均孔徑與孔徑分佈(ASAP)……67 4-3 改質黏土對有機污染物(BTEX)之吸持作用…72 4-3-1 BTEX之吸持行為…………………………………………………………72 4-3-2 不同改質劑對BTEX之吸持影響………………………………78 4-3-3 改質劑特性對BTEX分佈常數之影響……………………83 4-4 改質黏土對無機污染物之吸附作用………………………88 4-4-1 不同改質黏土對重金屬之吸附影響………………………88 4-4-2 不同土壤基材對重金屬之吸附差異………………………97 4-4-3 不同改質黏土對無機陰離子之吸附影響……………101 4-4-4 不同土壤基材對無機陰離子之吸附差異……………106 第五章 結論與建議……………………………………………………………………109 5-1 結論…………………………………………………………………………………109 5-2 建議…………………………………………………………………………………110 參考文獻 ……………………………………………………………………………………………111

    1. 張育智,“土壤污染管理之分析”,碩士論文,國立中興大學環境工程學系,(2014)
    2. B. M. Braja, 原著,胡德欽譯,“土壤力學”,高立,初版,(1997)
    3. 曾文尼,“土壤無機相結構對揮發性有機污染物吸∕脫附行為之影響”,碩士論文,國立中央大學環境工程研究所,(2001)
    4. 莊雅婷,“具特殊官能基之土壤對水溶液中有機與無機污染物吸持行為之研究”,碩士論文,國立中央大學環境工程研究所,(2001)
    5. 陳庭堅,“不同年代土壤腐植質以及結合金屬特性研究”,碩士論文,國立屏東科技大學環境工程研究所,(2016)
    6. Stevenson F.J., “Humus chemistry : genesis, composition, reactions”, John Wiley & Sons Inc., 2th Ed. (1994)
    7. Bear F.E., “Chemistry of the Soil”, ACS Monograph Series No.160, pp.258, (1964)
    8. White R.E., “Introduction to the Principles and Practices of Soil Science”, Blackwell Science Inc., 2th Ed, pp.11-32, (1987)
    9. Fafard J.; Detellier C., “Intercalation of a block co-polymer in kaolinite”, Journal of Colloid and Interface Science, (2015)
    10. 衣德成,“車籠埔斷層帶組構特性與膨潤石-伊利石礦物相轉變之研究”,碩士論文,國立成功大學地球科學研究所,(2004)
    11. Lambert S.M., “Functional Relationship Between Sorption in Soil and Chemical Structure”, J. Agric. Food Chem., 15, pp.572-576, (1989)
    12. Lambert S.M.; Porter P.E.; Schieferstein R.H., “Movement and Sorption of Chemicals Applied to the Soil”, Weed, 13, pp.185-190, (1965)
    13. Chiou C.T.; Louis J.P.; Virgil H.F., “A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds”, Science, 206, pp.831-832, (1979)
    14. 林芳伃,“多重功能改質黏土之吸持與催化特性研究”,碩士論文,國立中央大學環境工程研究所,(2012)
    15. Chiou C.T., “Partition and Adsorption of Organic Contaminants in Environmental Systems”, Hoboken, N.J. : Wiley-Interscience, (2002)
    16. Chiou C.T.; Porter P.E.; Schmedding D.W., “Partition Equilibria of Nonionic Organic Compounds between Soil Organic Matter and Water”, Environ. Sci. Technol., 17, pp.227-231, (1983)
    17. Means J.C.; Wood S.G.; Hassett J.J., “Sorption of Polynuclear Aromatic Hydrocarbons by Sediments and Soils”, Environ. Sci. Technol., 14, pp.1524-1528, (1980)
    18. Grathwohl P., “Influence of Organic Matter from Soils and Sediments from Various Organicon the Sorption of Some Chlorinated Aliphatic Hydrocarbons : Implications on Koc Correlations”, Environ. Sci. Technol, 24, pp.1687-1693, (1990)
    19. Murphy E.M.; Zachara J.M.; Smith S.C., “Influence of Mineral-Bound Humic Substances on the Sorption of Hydrophobic Organic Compounds”, Environ. Sci. Technol., 24, pp.1507-1516, (1990)
    20. Xing B.; McGil B.; Dudas M.J., “Sorption of α-Naphthol onto Organic Sorbents Varying in Polarity and Aromaticity”, Chemosphere, 28, pp.145-153, (1994)
    21. Brunauer S.; Deming L.S.; Deming W.E.; Teller E., “On a Theory of the van der Waals Adsorption of Gases”, J. Am. Chem. Soc., 62, pp.1723-1732, (1940)
    22. Ruthven D.M., “Principles of Adsorption and Adsorption Process”, John Wiley & Sons, (1984)
    23. 賴芷伶,“混摻團聯式共聚高分子在液態中藉由氫鍵形成之自組裝行為研究”,碩士論文,國立交通大學環境工程研究所,(2006)
    24. 石健忠、戴子安,“團聯型高分子自組裝—剛強和柔軟的結合”,科學發展,476,pp.23,(2012)
    25. Nikos Hadjichristidis; Hermis Iatrou; Marinos Pitsikalis; Stergios Pispas; Apostolos Avgeropoulos,“Linear and non-linear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk”, Prog. Polym. Sci., 30, pp.725–782, (2005)
    26. Zhisheng Gao; Adi Eisenberg, “A model of micellization for block copolymers in solutions”, Marcomolecules, 26, pp.7353-7360, (1993)
    27. Karine Khougaz; Irina Astafieva; Adi Eisenberg, “Micellization in Block Polyelectrolyte Solutions”, Static Light Scattering Characterization, 3, (1995)
    28. Fiona L.; Baines Steven P.; Armes Norman C.; Billingham; Zdenek Tuzar, “Micellization of Poly(2-(dimethylamino)ethyl methacrylate-block-methyl methacrylate) Copolymers in Aqueous Solution”, Macromolecules, 29, (1996)
    29. Yan Liu; Jianbo Li; Jie Ren; Chao Lin; Junzhao Leng, “ Preparation and in vitro pH-responsive drug release of amphiphilic dendritic star-block copolymer complex micelles”, Materials Letters, 127, pp.8-11, (2014)
    30. Ya Na Xue; Zhen Zhen Huang; Jian Tao Zhang; Min Zhang; Shi Wen Huang; Ren Xi Zhou, “Synthesis and self-assembly of amphiphilic poly(acrylic acid-b-DL-lactide)to form micelles for pH-responsive drug delivery”, Polymer, 50, pp.3076-3713, (2009)
    31. Qingqing Bian; Yan Xiao; Chen Zhou; Meidong Lang, “Synthesis, self-assembly, and pH-responsive behavior of (photo-crosslinked) star amphiphilic triblock copolymer”, Journal of Colloid and Interface Science, 392, pp.141-150, (2013)
    32. 毛永成,“乙烯基矽烷化物誘導之選擇性鏈轉移反應:合成含同位聚苯乙烯之雙嵌段共聚物之新合成方法”,碩士論文,國立中正大學化學工程研究所,(2010)
    33. Paul J. Flory, “Principles of Polymer Chemistry”,Cornell University Press, pp.39, (1953)
    34. Henry Hsieh; Roderic P. Quirk,“Anionic Polymerization: Principles and practical applications”, Marcel Dekker, (1996)
    35. Wade Braunecker; Krzysztof Matyjaszewski, “Controlled/living radical polymerization: Features, developments, and perspectives”, Progress in Polymer Science, 32, pp.93-146, (2007)
    36. John Chiefari; Chong Y.K.; Frances Erole; Julia Krstina; Justine Jeffery; Tam P.T. Le; Roshan T.A. Mayadunne; Gordon F. Meijs; Catherine L. Moad; Graeme Moad; Ezio Rizzardo; San H. Thang, “Living Free-Radical Polymerization by Reversible Addtion-Fragmentation Chain Transfer:The RAFT Process”, Macromolecules, 31, pp.5559-5562, (1998)
    37. Chin Wei Chiu; Jiang Jen Lin,“Self-assembly behavior of polymer-assisted clays”, Progress in Polymer Science, 37, pp.406-444, (2012)
    38. Richard A. Vaia; Emmanuel P. Giannelis, “Lattice Model of Polymer Melt Intercalation in Organically-Modified Layered Silicates”, Macromolecules, 30, pp.7990-7999, (1997)
    39. Michael Alexandre; Philippe Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials”, Materials Science and Engineering, 28, pp.1-63, (2000)
    40. Pavlidou S.; Papaspyrides C.D.,“A review on polymer-layered silicate nanocomposites”, Progress in Polymer Science, 33, pp.1119-1198, (2008)
    41. Qilong Tai; Richard K.K. Yuen; Lei Song; Yuan Hu,“A novel polymeric flame retardant and exfoliated clay nanocomposites:Preparation and properties”, Chemical Engineering Journal, 183, pp.542-549, (2012)
    42. 何如真,“雙團聯共聚物之合成與層狀黏土複合材料之製備及其特性吸持性研究”,碩士論文,國立中央大學環境工程研究所,(2017)
    43. IUPAC Manual of Symbolsand Terminology ,Appendix 2 ,Pt. 1,Colloid and Surface Chemistry, Pure Appl. Chem, 31, pp.578, (1972)
    44. Ahmed A.A.; Thiele-Bruhnc S.; Aziz S.G.; Hilal R. H.; Elroby S.A.; Al-Youbi A.O.; Leinweber P.; Kühn O., “Interaction of Polar and Nonpolar Organic Pollutants with Soil Organic Matter: Sorption Experiments and Molecular Dynamics Simulation”, Science of The Total Environment, 508, pp.276-287, (2015)
    45. Lee J.F.; Hsu,M.H.; Chao H.P., “The effect of surfactants on the distribution of organic compounds in the soil solid/water system”, Journal of Hazardous Materials,114,pp.123-130, (2004)
    46. Lee J.F.; Chang Y.T.; Chao H.P.; Hsu M.H., “Organic compound distribution between nonionic surfactant solution and natural solids: Applicability of a solution property parameter”, Journal of Hazardous Materials, 129, pp. 282-289, (2006)
    47. Xua F.; Lianga X.; Lina B.; Schrammb K.W.; Kettrupb A., “Estimation of soil organic partition coefficients: from retention factors measured by soil column chromatography with water as eluent” ,Journal of Chromatography A, 968, pp.7-16, (2002)
    48. 陳宣宣,“多功能有機層柱改質黏土之製備與吸持性之研究”,博士論文,國立中央大學環境工程研究所,(2017)
    49. Wang X.S.; Qin Y., “Equilibrium sorption isotherms for of Cu2+on ricebran”, Process Biochemistry, pp.677-680, (2005)
    50. Gulnaziya Issabayeva; Mohamed Kheireddine Aroua, “Removal of lead from aqueous solutions on palm shell activated carbon”, Bioresource Technology, pp.2350-2355 , (2006)
    51. Débora Martins Aragão; Maria de Lara P. M. Arguelho; Carolina Mangieri Oliveira Prado; José do Patrocinio Hora Alves, “Use of natural kaolinite clay as an adsorbent to remove Pb(II), Cd(II), and Cu(II) from aqueous solution”, Materials Science Forum, 805, pp.581-584, (2015)
    52. Helios Rybicka E.; Calmano W.; Breeger A., “Heavy metals sorption/desorption on competing clay minerals; an experimental study”, Applied Clay Science, 9, pp.369-381, (1995)
    53. Abollion O.; Aceto M.; Malandrino M.; Sarzanini C.; Mentasti E., “Adsorption of Heavy Metals on Na-montmorillonite. Effect of pH and Organic Substances”, Water Research, 37, pp.1619-1627, (2003)
    54. Balan C.; Volf I.; Bilba D., “Chromium (VI) removal from aqueous solutions by purolite base anion-exchange resins with gel structure”, Chemical Industry & Chemical Engineering Quarterly, 19, pp.615-628, (2013)
    55. Omar Ajouyed; Charlotte Hurel; Nicolas Marmier, “Evaluation of the Adsorption of Hexavalent Chromium on Kaolinite and Illite”, Journal of Environmental Protection, 2, pp.1347-1352, (2011)
    56. Akar S.T.; Yetimoglu Y.; Gedikbey T., “Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification”, Desalination, 244, pp.97-108, (2009)

    QR CODE
    :::