| 研究生: |
陳柏廷 Bo-Ting Chen |
|---|---|
| 論文名稱: |
施用農廢所製生物炭對於澆灌沼液沼渣農地所含抗生素抗性基因豐度之影響 Influence of employing agronomic waste-derived biochars on the abundance of antibiotic resistance genes in arable soils irrigated with biogas slurries/residues |
| 指導教授: |
林居慶
Chu-Ching Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 沼液沼渣 、農廢衍生生物炭 、抗生素抗性基因 、盆栽試驗 |
| 外文關鍵詞: | biogas digestate, agricultural wastes-derived biochar, antibiotic resistant genes, pot tests |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
抗生素抗藥性已被世界衛生組織認定為全球最大健康威脅之一,原因在於除了醫療濫用外,抗生素也常被畜牧業者添加至飼料中作為預防牲畜染病及促進生長用,但殘餘的抗生素與抗生素抗性菌可隨糞尿排至環境中,進而造成抗生素抗性基因(antibiotic resistant genes, ARGs)在環境與臨床間的散播。近年來政府為了改善畜牧糞尿污染問題,積極輔導畜牧業者以厭氧消化方式處理畜牧糞尿,將其轉為沼液沼渣並回歸農用,達到循環經濟的效果。然而已有文獻指出,台灣畜牧場最常見的中、常溫厭氧消化程序無法有效地削減糞尿中的ARGs,且本研究群先前碩論也觀察到縮模系統中的土壤在澆灌沼液沼渣後,所引入的ARGs具有一定的持久性,暗示著農地ARGs的累積潛勢不可輕忽。對此國外雖有文獻嘗試使用生物炭處理糞肥澆灌農田所產生的ARGs污染問題,並觀察到ARGs因而豐度降低,但現階段針對將生物炭應用於澆灌沼液沼渣後的土壤,其內所含的ARG豐度變化的調查依然不多。有鑑於此,本研究收集廢棄菇包(M)、稻殼(R),以不同溫度(300 ℃、600 ℃)燒製成四種生物炭(M3、M6、R3、R6)並比較其性質後,以2% (w/w)比例與土壤混合,加上未添加生物炭的空白組(CK)共5組,進行小白菜(Brassica rapa chinensis)種植的盆栽縮模方式,模擬農地環境在30天內根際與周圍土壤中4類ARG (tetM, sul1, ermB, blaTEM)和屬於移動性遺傳元件(MGE)的第一型整合子intI1,以及16S rRNA gene的豐度變化。結果顯示:(1)單純種植小白菜的CK組在30天內就可顯著降低土壤中的ARGs/MGE豐度,但在第30天有與第20天顯著差異的上升趨勢;(2)整體而言,添加生物炭組第30天ARGs/MGE豐度數值持續下降且常顯著低於CK組,但sul1及intI1豐度經處理後雖有顯著降低,但仍保有一定豐度,未來需特別注意;(3)菇包生物炭組第0天ARGs/MGE豐度即顯著低於CK組,稻殼生物炭組則僅略微下降但與CK組無顯著差異,兩種材料第0天時都是300 ℃組豐度較低,這可能為原料及奈米級生物炭所造成的差異。第30天時各生物炭組在不同基因有不同的狀況,但以相對豐度來看則是M3組常顯著低於各組;(4)使用兩種模型評估目標基因隨時間的衰退狀況時,除tetM與ermB外,其餘ARGs及總ARGs在兩種模型中都有相似的趨勢,且菇包生物炭組若比較衰退係數時在各基因中常為最慢的組別;(5)生物炭的添加顯著改變土壤微生物群落結構,造成各組菌相不同,尤其M3組與各組差異最大。而沼液沼渣中相關菌群相對豐度在30天後大幅下降;(6) Spearman相關分析結果顯示所有目標ARGs/MGE彼此間皆為顯著正相關,但與16S rRNA gene呈現顯著負相關,代表隨菌數越多則含ARGs的細菌可能因其體內帶有ARGs反而造成額外的適存度代價致使其傾向丟棄ARGs。最後,ARGs/MGE與環境因子之間的相關性分析因環境因子檢測項目較少,無法得知影響ARGs/MGE的環境因子整體面貌,且RDA分析解釋度較低,未來需進行更全面的分析以了解環境因子對ARGs/MGE影響能力。
The problem of antibiotic resistance has been recognized by the WHO as one of the greatest global public health threats. In addition to medical misuse, antibiotics are often added to animal feed by livestock farmers to both prevent diseases and promote growth of animals. The residual antibiotics and antibiotic resistant bacteria are inevitably excreted to the environment through feces and urine, leading to the problem of antibiotic resistant genes (ARGs) spread in the environment and ultimately the clinic. In recent years, in order to achieving a circular economy effect, our government has actively advocated using anaerobic digestion to treat livestock excrement, converting it into biogas digestate for agricultural use. However, existing literature has pointed out that the commonly used anaerobic digestion processes under ambient-air conditions in Taiwanese livestock farms cannot substantially diminish ARG levels from manure. Previous studies in our research group have also observed the persistence of ARGs in soil after the application of biogas digestate, emphasizing the potential of ARG accumulation in farmland. To address this issue, studies by others have attempted to use biochar to treat ARGs contamination from manure irrigation in farmland and have observed a decrease in ARGs abundance. However, there is still limited research on the use of biochar to treat ARGs contamination in soil receiving biogas digestate. Therefore, in this study, waste mushroom grow bag (M) and rice husk (R) were collected and pyrolyzed at different temperatures (300 ℃ and 600 ℃) to obtain four types of biochar samples (designated as M3, M6, R3, R6). After comparing their properties, the biochar was mixed with soil at a ratio of 2% (w/w). A control group (CK) without biochar addition was also included, resulting in a total of five groups. Pak choi (Brassica rapa chinensis) was planted in pots to simulate the agricultural environment, and the changes in the abundance of four types of ARGs (tetM, sul1, ermB, blaTEM), the class 1 integron gene intI1 (MGE), and the 16S rRNA gene were examined in the bulk and rhizosphere soil over a period of 30 days. The results showed that: (1) The CK group with only pak choi planting significantly reduced the abundance of ARGs/ MGE in the soil within 30 days, but there was a substantive increase on day 30 compared to day 20; (2) The biochar-added groups continuously decreased the abundance of ARGs/MGE on day 30 and generally had significantly lower values than the CK group. However, the abundance of sul1 and intI1, although significantly reduced after treatment, still maintained a certain level, indicating the need for special attention in the future; (3) The mushroom grow bag biochar group showed significantly lower ARGs/MGE abundance than the CK group on day 0, while the rice husk biochar group only showed a slight decrease without significant differences compared to the CK group. Both materials had lower abundance in the 300 ℃ group on day 0. On day 30, the biochar-added groups exhibited different conditions for different genes, but the M3 group consistently had significantly lower relative abundance than the other groups; (4) The assessment of soil ARGs/MGE decay using two models showed similar trends for sul1, intI1, blaTEM, and total ARGs. In the rice husk biochar group, the decay coefficients for sul1, intI1, and total ARGs were higher than those of the mushroom grow bag biochar group, while for blaTEM, the 300 ℃ biochar group had higher decay coefficients than the 600 ℃ biochar group, and the R6 group showed an increase. The mushroom grow bag biochar group consistently had the slowest decay coefficients among the different genes; (5) The addition of biochar significantly altered the microbial community structure in the soil, resulting in different bacterial compositions among the groups, with the M3 group showing the greatest difference compared to the other groups. The microbial communities from the biogas slurry/residue were suppressed by the original microorganisms in the soil, resulting in a significant decrease in the relative abundance of related microbial communities after 30 days; (6) All target ARGs/MGE showed significant positive correlations with each other and significant negative correlations with the 16S rRNA gene. This suggests that as the microbial population increases, bacteria carrying ARGs may incur additional fitness costs, leading to a tendency to discard ARGs. The correlation analysis between ARGs/MGE and environmental factors was limited due to the lack of comprehensive environmental factor measurements, and the redundancy analysis (RDA) had low explanatory power. Future research should conduct more comprehensive analyses to understand the overall impact of environmental factors on ARGs/MGE.
1. Karwehl, S., & Stadler, M. (2016). Exploitation of fungal biodiversity for discovery of novel antibiotics. How to Overcome the Antibiotic Crisis: Facts, Challenges, Technologies and Future Perspectives, 303-338.
2. Aminov, R. I. (2010). A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in Microbiology, 1, 134.
3. Stadler, M., & Dersch, P. (Eds.). (2016). How to overcome the antibiotic crisis: facts, challenges, technologies and future perspectives (Vol. 398). Springer.
4. Harbarth, S., Theuretzbacher, U., Hackett, J., & DRIVE-AB consortium. (2015). Antibiotic research and development: business as usual? The Journal of Antimicrobial Chemotherapy, 70(6), 1604–1607.
5. Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., & Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8), 742–750.
6. Blaskovich M. A. T. (2018). The Fight Against Antimicrobial Resistance Is Confounded by a Global Increase in Antibiotic Usage. ACS Infectious Diseases, 4(6), 868–870. https://doi.org/10.1021/acsinfecdis.8b00109
7. Guilhelmelli, F., Vilela, N., Albuquerque, P., Derengowski, L.daS., Silva-Pereira, I., & Kyaw, C. M. (2013). Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Frontiers in Microbiology, 4, 353. https://doi.org/10.3389/fmicb.2013.00353
8. Walsh, C., & Wencewicz, T. (2016). Antibiotics: Challenges, Mechanisms, Opportunities. John Wiley & Sons.
9. Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology, 8(6), 423-435.
10. Schillaci, D., Spanò, V., Parrino, B., Carbone, A., Montalbano, A., Barraja, P., Diana, P., Cirrincione, G., & Cascioferro, S. (2017). Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. Journal of Medicinal Chemistry, 60(20), 8268–8297. https://doi.org/10.1021/acs.jmedchem.7b00215
11. Aminov, R. I., & Mackie, R. I. (2007). Evolution and ecology of antibiotic resistance genes. FEMS Microbiology Letters, 271(2), 147–161. https://doi.org/10.1111/j.1574-6968.2007.00757.x
12. Peterson, E., & Kaur, P. (2018). Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Frontiers in Microbiology, 9, 2928.
13. Cantón R. (2009). Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clinical Microbiology and Infection, 15, 20–25.
14. Martínez J. L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science, 321(5887), 365–367.
15. Martinez, J. L., & Baquero, F. (2000). Mutation frequencies and antibiotic resistance. Antimicrobial Agents and Chemotherapy, 44(7), 1771–1777. https://doi.org/10.1128/AAC.44.7.1771-1777.2000
16. Davies J. (1994). Inactivation of antibiotics and the dissemination of resistance genes. Science, 264(5157), 375–382.
17. Liu, S. S., Qu, H. M., Yang, D., Hu, H., Liu, W. L., Qiu, Z. G., Hou, A. M., Guo, J., Li, J. W., Shen, Z. Q., & Jin, M. (2018). Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Research, 136, 131–136. https://doi.org/10.1016/j.watres.2018.02.036
18. Khan, S. N., & Khan, A. U. (2016). Breaking the Spell: Combating Multidrug Resistant 'Superbugs'. Frontiers in Microbiology, 7, 174. https://doi.org/10.3389/fmicb.2016.00174
19. Viana, A. T., Caetano, T., Covas, C., Santos, T., & Mendo, S. (2018). Environmental superbugs: The case study of Pedobacter spp. Environmental Pollution, 241, 1048–1055.
20. Organization, W. H. (2014). Antimicrobial resistance: global report on surveillance 2014. World Health Organization.
21. Schnoor J. L. (2014). Re-emergence of emerging contaminants. Environmental Science & Technology, 48(19), 11019–11020. https://doi.org/10.1021/es504256j
22. Pruden, A., Pei, R., Storteboom, H., & Carlson, K. H. (2006). Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environmental Science & Technology, 40(23), 7445–7450. https://doi.org/10.1021/es060413l
23. Ghimpețeanu, O. M., Pogurschi, E. N., Popa, D. C., Dragomir, N., Drăgotoiu, T., Mihai, O. D., & Petcu, C. D. (2022). Antibiotic Use in Livestock and Residues in Food-A Public Health Threat: A Review. Foods, 11(10), 1430.
24. Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., Bonhoeffer, S., & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science, 365(6459), eaaw1944.
25. Aarestrup F. (2012). Sustainable farming: Get pigs off antibiotics. Nature, 486(7404), 465–466. https://doi.org/10.1038/486465a
26. Aarestrup F. M. (2000). Occurrence, selection and spread of resistance to antimicrobial agents used for growth promotion for food animals in Denmark. APMIS. Supplementum, 101, 1–48.
27. Sarmah, A. K., Meyer, M. T., & Boxall, A. B. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026
28. Allen H. K. (2014). Antibiotic resistance gene discovery in food-producing animals. Current Opinion in Microbiology, 19, 25–29. https://doi.org/10.1016/j.mib.2014.06.001
29. Aarestrup F. M. (2005). Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic & Clinical Pharmacology & Toxicology, 96(4), 271–281. https://doi.org/10.1111/j.1742-7843.2005.pto960401.x
30. Liu, C., Feng, C., Duan, Y., Wang, P., Peng, C., Li, Z., Yu, L., Liu, M., & Wang, F. (2023). Ecological risk under the dual threat of heavy metals and antibiotic resistant Escherichia coli in swine-farming wastewater in Shandong Province, China. Environmental Pollution, 319, 120998.
31. Dweba, C. C., Zishiri, O. T., & El Zowalaty, M. E. (2018). Methicillin-resistant Staphylococcus aureus: livestock-associated, antimicrobial, and heavy metal resistance. Infection and Drug Resistance, 11, 2497–2509. https://doi.org/10.2147/IDR.S175967
32. Pal, C., Asiani, K., Arya, S., Rensing, C., Stekel, D. J., Larsson, D. G. J., & Hobman, J. L. (2017). Metal Resistance and Its Association With Antibiotic Resistance. Advances in Microbial Physiology, 70, 261–313. https://doi.org/10.1016/bs.ampbs.2017.02.001
33. Seiler, C., & Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology, 3, 399. https://doi.org/10.3389/fmicb.2012.00399
34. Williams-Nguyen, J., Sallach, J. B., Bartelt-Hunt, S., Boxall, A. B., Durso, L. M., McLain, J. E., Singer, R. S., Snow, D. D., & Zilles, J. L. (2016). Antibiotics and Antibiotic Resistance in Agroecosystems: State of the Science. Journal of Environmental Quality, 45(2), 394–406. https://doi.org/10.2134/jeq2015.07.0336
35. Franklin, A. M., Aga, D. S., Cytryn, E., Durso, L. M., McLain, J. E., Pruden, A., Roberts, M. C., Rothrock, M. J., Snow, D. D., Watson, J. E., & Dungan, R. S. (2016). Antibiotics in Agroecosystems: Introduction to the Special Section. Journal of Environmental Quality, 45(2), 377–393. https://doi.org/10.2134/jeq2016.01.0023
36. Nesme, J., & Simonet, P. (2015). The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environmental Microbiology, 17(4), 913–930. https://doi.org/10.1111/1462-2920.12631
37. Shin, H., Kim, Y., Han, S., & Hur, H. G. (2023). Resistome Study in Aquatic Environments. Journal of Microbiology and Biotechnology, 33(3), 277–287. https://doi.org/10.4014/jmb.2210.10044
38. Boehme, S., Werner, G., Klare, I., Reissbrodt, R., & Witte, W. (2004). Occurrence of antibiotic-resistant enterobacteria in agricultural foodstuffs. Molecular Nutrition & Food Research, 48(7), 522–531. https://doi.org/10.1002/mnfr.200400030
39. Rodríguez, C., Lang, L., Wang, A., Altendorf, K., García, F., & Lipski, A. (2006). Lettuce for human consumption collected in Costa Rica contains complex communities of culturable oxytetracycline- and gentamicin-resistant bacteria. Applied and Environmental Microbiology, 72(9), 5870–5876. https://doi.org/10.1128/AEM.00963-06
40. 葉昇炎、鄭閔謙、程梅萍(2016)。畜牧糞尿水資源化再利用之發展沿革。農業生技產業季刊,(46),29-32。
41. 郭楊正、廖麗玲 (2022)。沼液沼渣回收再利用方法評估。行政院原子能委員會核能研究所
42. Youngquist, C. P., Mitchell, S. M., & Cogger, C. G. (2016). Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review. Journal of Environmental Quality, 45(2), 537–545. https://doi.org/10.2134/jeq2015.05.0256
43. Sun, W., Qian, X., Gu, J., Wang, X. J., & Duan, M. L. (2016). Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure. Scientific Reports, 6, 30237. https://doi.org/10.1038/srep30237
44. Gou, M., Hu, H. W., Zhang, Y. J., Wang, J. T., Hayden, H., Tang, Y. Q., & He, J. Z. (2018). Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. The Science of the Total Environment, 612, 1300–1310.
45. 林子晞 (2022)。沼液沼渣的施用促成農地土壤抗生素抗性基因增殖的可能性探討。國立中央大學環工所碩士論文,桃園縣。https://hdl.handle.net/11296/35jd58
46. Séveno, N. A., Kallifidas, D., Smalla, K., van Elsas, J. D., Collard, J. M., Karagouni, A. D., & Wellington, E. M. (2002). Occurrence and reservoirs of antibiotic resistance genes in the environment. Reviews and Research in Medical Microbiology, 13(1), 15-27.
47. Chen, P., Guo, X., Li, S., & Li, F. (2021). A review of the bioelectrochemical system as an emerging versatile technology for reduction of antibiotic resistance genes. Environment International, 156, 106689. https://doi.org/10.1016/j.envint.2021.106689
48. Hu, Y., Zhang, T., Jiang, L., Luo, Y., Yao, S., Zhang, D., Lin, K., & Cui, C. (2019). Occurrence and reduction of antibiotic resistance genes in conventional and advanced drinking water treatment processes. The Science of the Total Environment, 669, 777–784. https://doi.org/10.1016/j.scitotenv.2019.03.143
49. Zhang, J., Sui, Q., Tong, J., Buhe, C., Wang, R., Chen, M., & Wei, Y. (2016). Sludge bio-drying: Effective to reduce both antibiotic resistance genes and mobile genetic elements. Water Research, 106, 62–70. https://doi.org/10.1016/j.watres.2016.09.055
50. Zheng, H., Wang, R., Zhang, Q., Zhao, J., Li, F., Luo, X., & Xing, B. (2020). Pyroligneous acid mitigated dissemination of antibiotic resistance genes in soil. Environment International, 145, 106158. https://doi.org/10.1016/j.envint.2020.106158
51. Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., Michael, I., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. The Science of the Total Environment, 447, 345–360. https://doi.org/10.1016/j.scitotenv.2013.01.032
52. Manaia, C. M., Rocha, J., Scaccia, N., Marano, R., Radu, E., Biancullo, F., Cerqueira, F., Fortunato, G., Iakovides, I. C., Zammit, I., Kampouris, I., Vaz-Moreira, I., & Nunes, O. C. (2018). Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environment International, 115, 312–324. https://doi.org/10.1016/j.envint.2018.03.044
53. Nielsen, P. H., & McMahon, K. D. (2014). Microbiology and microbial ecology of the activated sludge process. Activated sludge–100 years and counting, 53-76.
54. Korzeniewska, E., & Harnisz, M. (2018). Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria. The Science of the Total Environment, 639, 304–315. https://doi.org/10.1016/j.scitotenv.2018.05.165
55. Zhang, Y., Zhuang, Y., Geng, J., Ren, H., Zhang, Y., Ding, L., & Xu, K. (2015). Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. The Science of the Total Environment, 512-513, 125–132.
56. Auerbach, E. A., Seyfried, E. E., & McMahon, K. D. (2007). Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Research, 41(5), 1143–1151. https://doi.org/10.1016/j.watres.2006.11.045
57. Huang, F., Hong, Y., Mo, C., Huang, P., Liao, X., & Yang, Y. (2022). Removal of antibiotic resistance genes during livestock wastewater treatment processes: Review and prospects. Frontiers in Veterinary Science, 9, 1054316. https://doi.org/10.3389/fvets.2022.1054316
58. Uluseker, C., Kaster, K. M., Thorsen, K., Basiry, D., Shobana, S., Jain, M., Kumar, G., Kommedal, R., & Pala-Ozkok, I. (2021). A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Frontiers in Microbiology, 12, 717809.
59. Alexander, J., Knopp, G., Dötsch, A., Wieland, A., & Schwartz, T. (2016). Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. The Science of the Total Environment, 559, 103–112. https://doi.org/10.1016/j.scitotenv.2016.03.154
60. Luczkiewicz, A., Jankowska, K., Bray, R., Kulbat, E., Quant, B., Sokolowska, A., & Olanczuk-Neyman, K. (2011). Antimicrobial resistance of fecal indicators in disinfected wastewater. Water science and technology : a journal of the International Association on Water Pollution Research, 64(12), 2352–2361. https://doi.org/10.2166/wst.2011.769
61. Zhou, Z., Shen, Z., Cheng, Z., Zhang, G., Li, M., Li, Y., ... & Crittenden, J. C. (2020). Mechanistic insights for efficient inactivation of antibiotic resistance genes: a synergistic interfacial adsorption and photocatalytic-oxidation process. Science Bulletin, 65(24), 2107-2119.
62. Ren, S., Boo, C., Guo, N., Wang, S., Elimelech, M., & Wang, Y. (2018). Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent. Environmental Science & Technology, 52(15), 8666-8673.
63. Giannakis, S., Le, T. M., Entenza, J. M., & Pulgarin, C. (2018). Solar photo-Fenton disinfection of 11 antibiotic-resistant bacteria (ARB) and elimination of representative AR genes. Evidence that antibiotic resistance does not imply resistance to oxidative treatment. Water Research, 143, 334–345. https://doi.org/10.1016/j.watres.2018.06.062
64. Zhang, T., Zhang, X. X., & Ye, L. (2011). Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PloS ONE, 6(10), e26041. https://doi.org/10.1371/journal.pone.0026041
65. Ezzariai, A., Hafidi, M., Khadra, A., Aemig, Q., El Fels, L., Barret, M., ... & Pinelli, E. (2018). Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. Journal of Hazardous Materials, 359, 465-481.
66. Pruden, A., Larsson, D. J., Amézquita, A., Collignon, P., Brandt, K. K., Graham, D. W., ... & Zhu, Y. G. (2013). Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives, 121(8), 878-885.
67. Xie, W. Y., Shen, Q., & Zhao, F. J. (2018). Antibiotics and antibiotic resistance from animal manures to soil: a review. European Journal of Soil Science, 69(1), 181-195.
68. Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92(11), 1450-1457.
69. Yuan, P., Wang, J., Pan, Y., Shen, B., & Wu, C. (2019). Review of biochar for the management of contaminated soil: Preparation, application and prospect. Science of the Total Environment, 659, 473-490.
70. Shao, B., Liu, Z., Tang, L., Liu, Y., Liang, Q., Wu, T., ... & Yu, J. (2022). The effects of biochar on antibiotic resistance genes (ARGs) removal during different environmental governance processes: A mini review. Journal of Hazardous Materials, 129067.
71. Wang, Y., Liu, Y., Zhan, W., Zheng, K., Wang, J., Zhang, C., & Chen, R. (2020). Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. The Science of the Total Environment, 729, 139060. https://doi.org/10.1016/j.scitotenv.2020.139060
72. Rajapaksha, A. U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S. X., & Ok, Y. S. (2014). Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource Technology, 166, 303–308. https://doi.org/10.1016/j.biortech.2014.05.029
73. Vithanage, M., Rajapaksha, A. U., Tang, X., Thiele-Bruhn, S., Kim, K. H., Lee, S. E., & Ok, Y. S. (2014). Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. Journal of Environmental Management, 141, 95–103. https://doi.org/10.1016/j.jenvman.2014.02.030
74. Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46-59.
75. Duan, M., Li, H., Gu, J., Tuo, X., Sun, W., Qian, X., & Wang, X. (2017). Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environmental Pollution, 224, 787–795.
76. Zheng, H., Feng, N., Yang, T., Shi, M., Wang, X., Zhang, Q., Zhao, J., Li, F., Sun, K., & Xing, B. (2021). Individual and combined applications of biochar and pyroligneous acid mitigate dissemination of antibiotic resistance genes in agricultural soil. The Science of the Total Environment, 796, 148962.
77. Chen, Q. L., Fan, X. T., Zhu, D., An, X. L., Su, J. Q., & Cui, L. (2018). Effect of biochar amendment on the alleviation of antibiotic resistance in soil and phyllosphere of Brassica chinensis L. Soil Biology and Biochemistry, 119, 74-82.
78. Jiao, W., Du, R., Ye, M., Sun, M., Feng, Y., Wan, J., Zhao, Y., Zhang, Z., Huang, D., Du, D., & Jiang, X. (2018). 'Agricultural Waste to Treasure' - Biochar and eggshell to impede soil antibiotics/antibiotic resistant bacteria (genes) from accumulating in Solanum tuberosum L. Environmental Pollution, 242, 2088–2095.
79. Fang, J., Jin, L., Meng, Q., Shan, S., Wang, D., & Lin, D. (2022). Biochar effectively inhibits the horizontal transfer of antibiotic resistance genes via transformation. Journal of Hazardous Materials, 423(Pt B), 127150. https://doi.org/10.1016/j.jhazmat.2021.127150
80. He, L. Y., He, L. K., Gao, F. Z., Wu, D. L., Zou, H. Y., Bai, H., ... & Ying, G. G. (2021). Dissipation of antibiotic resistance genes in manure-amended agricultural soil. Science of the Total Environment, 787, 147582.
81. Xiao, X., Chen, B., Chen, Z., Zhu, L., & Schnoor, J. L. (2018). Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environmental Science & Technology, 52(9), 5027–5047. https://doi.org/10.1021/acs.est.7b06487
82. Cui, E., Wu, Y., Zuo, Y., & Chen, H. (2016). Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. Bioresource Technology, 203, 11–17. https://doi.org/10.1016/j.biortech.2015.12.030
83. Park, J. H., Ok, Y. S., Kim, S. H., Cho, J. S., Heo, J. S., Delaune, R. D., & Seo, D. C. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 142, 77–83. https://doi.org/10.1016/j.chemosphere.2015.05.093
84. Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102(19), 8877–8884. https://doi.org/10.1016/j.biortech.2011.06.078
85. 行政院農業委員會 (2020)。農業廢棄物排放量統計。資料引自https://agrstat.coa.gov.tw/sdweb/public/common/Download.aspx
86. 倪禮豐 (2003)。水稻廢棄資材之利用。花蓮區農業專訊 43: 21-24
87. 薛佑光 (2019)。菇包栽培後介質之生物炭開發與產業加值研究。資料引自https://reurl.cc/n0zGVd
88. Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 44(4), 1247–1253. https://doi.org/10.1021/es9031419
89. Ahmad, M., Lee, S. S., Rajapaksha, A. U., Vithanage, M., Zhang, M., Cho, J. S., Lee, S. E., & Ok, Y. S. (2013). Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresource Technology, 143, 615–622. https://doi.org/10.1016/j.biortech.2013.06.033
90. Igalavithana, A. D., Mandal, S., Niazi, N. K., Vithanage, M., Parikh, S. J., Mukome, F. N., ... & Ok, Y. S. (2017). Advances and future directions of biochar characterization methods and applications. Critical Reviews in Environmental Science and Technology, 47(23), 2275-2330.
91. Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., & Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110, 50-56.
92. Singh, B., Dolk, M. M., Shen, Q., & Camps-Arbestain, M. (2017). Biochar pH, electrical conductivity and liming potential. Biochar: A Guide to Analytical Methods, 23.
93. 鄧教毅 (2018)。重金屬生物有效性對於抗生素抗性基因在農地土壤的分佈與持續之影響。國立中央大學環工所碩士論文,桃園縣。https://hdl.handle.net/11296/g4u76w
94. 張智聖 (2019)。抗生素抗性菌與抗性基因在污水處理程序中的動態變化。國立中央大學環工所碩士論文,桃園縣。https://hdl.handle.net/11296/w3wbw7
95. MacFarland, T. W., Yates, J. M., MacFarland, T. W., & Yates, J. M. (2016). Spearman’s rank-difference coefficient of correlation. Introduction to nonparametric statistics for the biological sciences using R, 249-297.
96. Wang, M., Sun, Y., Liu, P., Sun, J., Zhou, Q., Xiong, W., & Zeng, Z. (2017). Fate of antimicrobial resistance genes in response to application of poultry and swine manure in simulated manure-soil microcosms and manure-pond microcosms. Environmental Science and Pollution Research, 24, 20949-20958.
97. Fahrenfeld, N., Knowlton, K., Krometis, L. A., Hession, W. C., Xia, K., Lipscomb, E., ... & Pruden, A. (2014). Effect of manure application on abundance of antibiotic resistance genes and their attenuation rates in soil: field-scale mass balance approach. Environmental Science & Technology, 48(5), 2643-2650.
98. Burch, T. R., Sadowsky, M. J., & LaPara, T. M. (2014). Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids. Environmental Science & Technology, 48(10), 5620-5627.
99. Burch, T. R., Sadowsky, M. J., & LaPara, T. M. (2017). Effect of different treatment technologies on the fate of antibiotic resistance genes and class 1 integrons when residual municipal wastewater solids are applied to soil. Environmental Science & Technology, 51(24), 14225-14232.
100. 李杰穎 (尚未發表)。季節效應對沼液沼渣中抗生素抗性基因豐度影響(題目暫定)。國立中央大學環工所碩士論文,桃園縣。
101. Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports (Amsterdam, Netherlands), 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570
102. Donohue, M. D., & Aranovich, G. L. (1998). Classification of Gibbs adsorption isotherms. Advances in Colloid and Interface Science, 76, 137-152.
103. Wang, W., Liu, P., Zhang, M., Hu, J., & Xing, F. (2012). The pore structure of phosphoaluminate cement. Open Journal of Composite Materials, 02(03), 104-112.
104. Fang, Q., Chen, B., Lin, Y., & Guan, Y. (2014). Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environmental Science & Technology, 48(1), 279-288.
105. Sajjadi, B., Chen, W. Y., & Egiebor, N. O. (2019). A comprehensive review on physical activation of biochar for energy and environmental applications. Reviews in Chemical Engineering, 35(6), 735-776.
106. Hinsinger, P., Plassard, C., Tang, C., & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil, 248, 43-59.
107. Martínez, J. L., Baquero, F., & Andersson, D. I. (2011). Beyond serial passages: new methods for predicting the emergence of resistance to novel antibiotics. Current Opinion in Pharmacology, 11(5), 439-445.
108. Sabbagh, P., Rajabnia, M., Maali, A., & Ferdosi-Shahandashti, E. (2021). Integron and its role in antimicrobial resistance: A literature review on some bacterial pathogens. Iranian Journal of Basic Medical Sciences, 24(2), 136–142. https://doi.org/10.22038/ijbms.2020.48905.11208
109. Lian, F., Yu, W., Zhou, Q., Gu, S., Wang, Z., & Xing, B. (2020). Size Matters: Nano-Biochar Triggers Decomposition and Transformation Inhibition of Antibiotic Resistance Genes in Aqueous Environments. Environmental Science & Technology, 54(14), 8821–8829. https://doi.org/10.1021/acs.est.0c02227
110. Zheng, D., Yin, G., Liu, M., Hou, L., Yang, Y., Van Boeckel, T. P., ... & Li, Y. (2022). Global biogeography and projection of soil antibiotic resistance genes. Science Advances, 8(46), eabq8015.
111. He, L. Y., He, L. K., Gao, F. Z., Wu, D. L., Zou, H. Y., Bai, H., ... & Ying, G. G. (2021). Dissipation of antibiotic resistance genes in manure-amended agricultural soil. Science of the Total Environment, 787, 147582.
112. Jiao, W., Du, R., Ye, M., Sun, M., Feng, Y., Wan, J., ... & Jiang, X. (2018). ‘Agricultural Waste to Treasure’–Biochar and eggshell to impede soil antibiotics/antibiotic resistant bacteria (genes) from accumulating in Solanum tuberosum L. Environmental Pollution, 242, 2088-2095.
113. Han, X. M., Hu, H. W., Chen, Q. L., Yang, L. Y., Li, H. L., Zhu, Y. G., ... & Ma, Y. B. (2018). Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biology and Biochemistry, 126, 91-102.
114. Lin, S. Y., Hameed, A., Arun, A. B., Liu, Y. C., Hsu, Y. H., Lai, W. A., Rekha, P. D., & Young, C. C. (2013). Description of Noviherbaspirillum malthae gen. nov., sp. nov., isolated from an oil-contaminated soil, and proposal to reclassify Herbaspirillum soli, Herbaspirillum aurantiacum, Herbaspirillum canariense and Herbaspirillum psychrotolerans as Noviherbaspirillum soli comb. nov., Noviherbaspirillum aurantiacum comb. nov., Noviherbaspirillum canariense comb. nov. and Noviherbaspirillum psychrotolerans comb. nov. based on polyphasic analysis. International Journal of Systematic and Evolutionary Microbiology, 63(Pt 11), 4100–4107. https://doi.org/10.1099/ijs.0.048231-0
115. Yu, M., & Zhao, Y. (2019). Comparative resistomic analyses of Lysobacter species with high intrinsic multidrug resistance. Journal of Global Antimicrobial Resistance, 19, 320-327.
116. Leffler, D. A., & Lamont, J. T. (2015). Clostridium difficile infection. New England Journal of Medicine, 372(16), 1539-1548.
117. Gerritsen, J. (2015). The genus Romboutsia: genomic and functional characterization of novel bacteria dedicated to life in the intestinal tract (Doctoral dissertation, Wageningen University and Research).
118. Weelink, S. A., van Doesburg, W., Saia, F. T., Rijpstra, W. I., Röling, W. F., Smidt, H., & Stams, A. J. (2009). A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiology Ecology, 70(3), 575–585. https://doi.org/10.1111/j.1574-6941.2009.00778.x
119. Losey, N. A., Stevenson, B. S., Busse, H. J., Damsté, J. S. S., Rijpstra, W. I. C., Rudd, S., & Lawson, P. A. (2013). Thermoanaerobaculum aquaticum gen. nov., sp. nov., the first cultivated member of Acidobacteria subdivision 23, isolated from a hot spring. International Journal of Systematic and Evolutionary microbiology, 63(Pt 11), 4149–4157. https://doi.org/10.1099/ijs.0.051425-0
120. Oshiki, M., Toyama, Y., Suenaga, T., Terada, A., Kasahara, Y., Yamaguchi, T., & Araki, N. (2022). N2O Reduction by Gemmatimonas aurantiaca and Potential Involvement of Gemmatimonadetes Bacteria in N2O Reduction in Agricultural Soils. Microbes and Environments, 37(2), ME21090. https://doi.org/10.1264/jsme2.ME21090
121. Avrahami, S., & Bohannan, B. J. (2007). Response of Nitrosospira sp. strain AF-like ammonia oxidizers to changes in temperature, soil moisture content, and fertilizer concentration. Applied and Environmental Microbiology, 73(4), 1166–1173. https://doi.org/10.1128/AEM.01803-06
122. Hirayama, H., Takai, K., Inagaki, F., Nealson, K. H., & Horikoshi, K. (2005). Thiobacter subterraneus gen. nov., sp. nov., an obligately chemolithoautotrophic, thermophilic, sulfur-oxidizing bacterium from a subsurface hot aquifer. International Journal of Systematic and Evolutionary Microbiology, 55(Pt 1), 467–472. https://doi.org/10.1099/ijs.0.63389-0
123. Huber, K. J., Geppert, A. M., Wanner, G., Fösel, B. U., Wüst, P. K., & Overmann, J. (2016). The first representative of the globally widespread subdivision 6 Acidobacteria,Vicinamibacter silvestris gen. nov., sp. nov., isolated from subtropical savannah soil. International Journal of Systematic and Evolutionary Microbiology, 66(8), 2971–2979. https://doi.org/10.1099/ijsem.0.001131
124. Moynihan, E. L., Richards, K. G., Ritz, K., Tyrrel, S. F., & Brennan, F. P. (2013). Impact of soil type, biology and temperature on the survival of non-toxigenic Escherichia coli O157. In Biology and Environment: Proceedings of the Royal Irish Academy (pp. 41-46). Royal Irish Academy.
125. Sun, L. N., Wang, D. S., Yang, E. D., Fang, L. C., Chen, Y. F., Tang, X. Y., & Hua, R. M. (2016). Cupriavidus nantongensis sp. nov., a novel chlorpyrifos-degrading bacterium isolated from sludge. International Journal of Systematic and Evolutionary Microbiology, 66(6), 2335–2341. https://doi.org/10.1099/ijsem.0.001034
126. 全國畜牧糞尿資源化網站 (2023,6月10日)。畜牧資源化推動成果。資料引自https://epafarm.epa.gov.tw/
127. 行政院環境保護署水質保護網 (2023,6月10日)。畜牧糞尿資源化。資料引自https://water.epa.gov.tw/Public/CHT/Issue/hus_resources.aspx
128. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., ... & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33.
129. Fu, Y., Wang, F., Sheng, H., Hu, F., Wang, Z., Xu, M., ... & Tiedje, J. M. (2021). Removal of extracellular antibiotic resistance genes using magnetic biochar/quaternary phosphonium salt in aquatic environments: A mechanistic study. Journal of Hazardous Materials, 411, 125048.
130. Shao, B., Liu, Z., Tang, L., Liu, Y., Liang, Q., Wu, T., ... & Yu, J. (2022). The effects of biochar on antibiotic resistance genes (ARGs) removal during different environmental governance processes: A mini review. Journal of Hazardous Materials, 129067.