跳到主要內容

簡易檢索 / 詳目顯示

研究生: 余韋德
Wei-Te Yu
論文名稱: Agent-based model for an order-driven market: herding effect, limit order strategies, and volatility enhanced trading activities
指導教授: 陳宣毅
Hsuan-Yi Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 89
中文關鍵詞: 代理人基模型限價單委託簿羊群效應經濟物理雙向拍賣制度
外文關鍵詞: agent-based model, limit order book, herding effect, econophysics, double auction
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們建立了在限價委託簿(limit oeder book)上以雙向拍賣制度(double aucton)運作的代理人基模型(agent-based model)。初步透過無策略的的代理人與具有羊群效應(herding effect)的代理人進行模擬交易比較,在具有羊群效應的模型中我們設定以決策後選擇市價單(market order)的代理人會出現羊群效應。羊群效應即是個體因從眾心理而表現出來的群體一致性行動。在金融市場中,即是交易者們受到過往市場價格變動的影響而產生決策收斂做出相同動作的現象,當市場價格波動越大時,一致性會越明顯。由於市場交易者各自有著不同的操作週期,所以模型中也考慮了交易者具備不同長度的歷史價格變動記憶。基於真實金融數據做統計分析後得到的典型事實(stylized facts),如價格波動的厚尾分佈(fat-tail distribution)和volume imbalance等,在我們的模擬結果也能得到。從結果來看,羊群效應確實可以造成更劇烈的價格變動,且記憶長度越長時,價格變動(volatility)也越劇烈。另外我們發現了一些新現象,在價格變動的自相關(autocorrelation of volatility)分析上,價格變動的記憶效應遠低於交易者對價格變動的記憶長度,我們認為這可能是來自於限價單(limit order)的影響。另外在volume imbalance和價格獲利率(price return)的關係上,羊群效應降低了在small imbalance時產生大價格變動的機會。在初步的模型中也無法得到如真實市場的spread-volatility關係,對此我們亦認為可能是受到限價單置放到限價委託簿上的方式所影響造成。於是我們比較了三種不同機制所得的結果,第一個機制即羊群效應,第二個機制是限價單的置放位置會受spread大小的影響,第三個機制則是交易活動熱烈程度會與過去的價格變動大小呈正相關。


    We build an agent-based model of an order-driven market with double auction. At first, we start with the comparison of non-interaction agents with no strategies and the herding agents who submit market orders. The simulation results reproduce some stylized facts
    such as fat-tailed distribution of volatility and volume imbalance. The herding effect is implemented by aggregation of agents who take market orders into opinion groups. The number of opinion groups in a simulation step is determined from previous volatilities of the
    market as different agents compare the price change over different time intervals. Besides confirming that when herding is included the tail of the distribution of volatility is enhanced, we found several new results. First, the autocorrelation time of volatility is much shorter than the memory of most of the agents because limit orders have strong influence on the location
    of best bid and best ask. Second, from the relation between bid-ask imbalance and price return we find that herding reduces the chance for a small imbalance to produce a large price change. We find that the relation between spread and volatility in our preliminary model
    does not agree with empirical data, we think limit orders have strong effects on the stylized features. Next, we compare the effects of three mechanisms. Our first mechanism is opinion aggregation, i.e., herding of agents in response to price volatility in the market is studied.
    The second mechanism is the way that limit orders placed by the agents are affected by the size of the spread in the limit order book. The third mechanism is the enhanced trading activities in the presence of large volatility.

    1 Introduction 1 1.1 Econophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Stylized facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Financial time series . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Fat-tailed distribution of returns . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Autocorrelation of volatility . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 The order-driven market in double auction mechanism . . . . . . . . . . . . 10 1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Agent-based model and herding model 16 2.1 Agent-based model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 herding model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Simulation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Results and discussion I 22 3.1 Distribution of price return . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Spread, first gap and volatility . . . . . . . . . . . . . . . . . . . . . . . . . . 29 I 3.3 Summary of chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Limit order strategies 36 4.1 Rules for submitting limit orders . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Increasing trading activity when market is more volatile . . . . . . . . . . . . 38 4.3 Simulation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Results and discussion II 40 5.1 Distribution function of volatility . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2 Autocorrelation of volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3 Spread-volatility relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.4 Model with herding of limit orders . . . . . . . . . . . . . . . . . . . . . . . 44 6 Conclusions and future works 55 A Model 1 with L=6 58 B Model 2 with different agent number 61 C Detailed study of the ACF of volatility 63 D The relation between volume imbalance and price return for all models 67 Bibliography 70

    [1] S. Maslov. Simple model of a limit order-driven market. Physica A, 278(3-4), 571-578
    (2000).
    [2] L. Bachelier Th´eorie de la sp´eculation. Gauthier-Villars, 1900.
    [3] A. Einstein, On the motion of small particles suspended in liquids at rest required by
    the molecular-kinetic theory of heat. Annalen der physik, 17, 549-560 (1905).
    [4] F. Black and M Scholes The pricing of options and corporate liabilities. Journal of
    political economy, 81(3),) 637-654 (1973.
    [5] M. Kardar. Statistical physics of particles. Cambridge University Press, 2007.
    [6] D. Sornette Dragon-kings, black swans and the prediction of crises. arXiv preprint arXiv
    0907.4290 (2009).
    [7] A. Chakraborti, I. M. Toke, M. Patriarca, and F. Abergel. Statistical theory of the
    continuous double auction. Quantitative Finance, 3(6), 481-514 (2003).
    [8] R.N. Mantegna and H.E. Stanley. An introduction to econophysics: correlation and
    complexity in finance. Cambridge University Press, Cambridge, 2000.
    [9] F. Slanina. Essentials of econophysics modelling. OUP Oxford, 2013.
    [10] L. Feng, B. Li, B. Podobnik, T. Preis, and H.E. Stanley. Linking agent-based models
    and stochastic models of financial markets. Proceedings of the National Academy of
    Sciences, 109(22), 8388-8393 (2012).
    [11] P. Weber and B. Rosenow, Order book approach to price impact. Quantitative Finance,
    5(4), 357-364 (2005).
    [12] E. Moro, J. Vicente, L. G. Moyano, A. Gerig, J. D. Farmer, G. Vaglica, F. Lillo and
    R. N. Mantegna. Market impact and trading profile of hidden orders in stock markets.
    Physical Review E, 80(6), 066102 (2009).
    [13] I. Mastromatteo and B. T´oth. and J.-P. Bouchaud. Anomalous impact in reaction-
    diffusion financial models. Physical Review Letters, 113(26), 268701 (2014).
    [14] R.N. Mantegna and H.E. Stanley. Scaling behaviour in the dynamics of an economic
    index. Nature, 376(6535), 46 (1995).
    [15] P. Gopikrishnan, V. Plerou, Luis A.N. Amaral, M. Meyer, and H.E. Stanley. Scaling
    of the distribution of fluctuations of financial market indices. Physical Review E, 60(5),
    5305 (1999).
    [16] J.-J. Chen, B. Zheng, and L. Tan. Agent-based model with asymmetric trading and
    herding for complex financial systems. PloS one, 8(11), e79531 (2013).
    [17] G. Caldarelli, M. Marsili, and Y.-C. Zhang. A prototype model of stock exchange. EPL
    (Europhysics Letters), 40(5), 479 (1997).
    [18] R. Murakami, T. Nakamura, S. Kimura, M. Manabe, and T. Tanizawa. On possible
    origins of trends in financial market price changes. Physica A, 420, 179–189 (2015).
    [19] V. Plerou, P. Gopikrishnan, and H.E. Stanley. Quantifying fluctuations in market
    liquidity: Analysis of the bid-ask spread. Physical Review E, 71(4), 046131 (2005).
    [20] W.-J. Ma, S.-C. Wang, C.-N. Chen, and C.-K. Hu. Crossover behavior of stock returns
    and mean square displacements of particles governed by the Langevin equation. EPL
    (Europhysics Letters), 102, 66003 (2013).
    [21] I. O. Baycan, G. Yildirim. Examining the dynamics of the Turkish manufacturing
    industry: A hidden Markov model approach. Chin. J. Phys., 55(3), 703-709 (2017).
    [22] J. Doiner and J.-P. Bouchaud. From Walras auctioneer to continuous time double
    auctions: a general dynamic theory of supply and demand J. Stat. Mech., 123406 (2011).
    [23] A. Chakraborti, I. M. Toke, M. Patriarca, and F. Abergel. Econophysics review: I.
    empirical facts. Quantitative Finance, 11(7), 991–1012 (2011).
    [24] A. Chakraborti, I. M. Toke, M. Patriarca, and F. Abergel. Econophysics review: II.
    agent-based models. Quantitative Finance, 11(7), 1013-1041 (2011).
    [25] B. T´oth, J. Kert´
    esz, and J.D. Farmer. Studies of the limit order book around large price
    changes. The European Physical Journal B-Condensed Matter and Complex Systems,
    71(4), 499-510 (2009).
    [26] J.D. Farmer, L. Gillemot, F. Lillo, S. Mike, and A. Sen. What really causes large price
    changes? Quantitative finance, 4(4), 383–397 (2004).
    [27] Kee-Hong Bae, Hasung Jang, and Kyung Suh Park. Traders choice between limit and
    market orders: evidence from NYSE stocks Journal of Financial Markets, 6(4), 517–538
    (2003).
    [28] W.-T. Yu and H.-Y. Chen. to be submitted.
    [29] M. G. Daniels, J.D. Farmer, L. Gillemot, G. Iori, and E. Smith. Quantitative model
    of price diffusion and market friction based on trading as a mechanistic random process.
    Physical review letters, 90(10), 108102 (2003).
    [30] L. Menkhoff. The use of technical analysis by fund managers: International evidence.
    Journal of Banking & Finance, 34(11), 2573-2586 (2010).
    [31] R. Cont. Empirical properties of asset returns: stylized facts and statistical issues.
    Quantitative Finance, 1(2), 223–236 (2001).
    [32] J.-P. Bouchaud, J.D. Farmer, and F. Lillo, Handbook of Financial Markets: Dynamics
    and Evolution. North-Holland, Amsterdam, 57-160, 2009.
    [33] V. Plerou, P. Gopikrishnan, X. Bavaix, and H.E. Stanley, Quantifying stock-price
    response to demand fluctuations. Physical Review E, 66(2), 027104 (2002).
    [34] Y. Yura, H. Takayasu, and D. Sornette and M. Takayasu. Financial brownian particle in
    the layered order-book fluid and fluctuation-dissipation relations. Physical review letters,
    112.9, 098703 (2014).
    [35] Y. Yura, H. Takayasu, and D. Sornette and M. Takayasu. Financial Knudsen num-
    ber: Breakdown of continuous price dynamics and asymmetric buy-and-sell structures
    confirmed by high-precision order-book information. Physical Review E, 92.4, 042811
    (2015).
    [36] K. Kanazawa, T. Sueshige H. Takayasu and M. Takayasu. Derivation of the Boltzmann
    equation for financial Brownian motion: Direct observation of the collective motion of
    high-frequency traders. Physical review letters, 120.13, 138301 (2018).
    [37] W.-T. Yu and H.-Y. Chen. Herding and zero-intelligence agents in the order book
    dynamics of an artificial double auction market. Chinese Journal of Physics, (2018).
    [38] J. Donier,J. Bonart, I. Mastromatteo and J. P. Bouchaud. A fully consistent, minimal
    model for non-linear market impact. Quantitative finance, 15.7, 1109-1121 (2015).
    [39] M. Cristelli, V. Alfi, L. Pietronero, and A. Zaccaria Liquidity crisis, granularity of the
    order book and price fluctuations. The European Physical Journal B, 73.1, 41-49 (2010).
    [40] D. Challet, M. Marsili, Y-C. Zhang Minority games: interacting agents in financial
    markets. Oxford University Press, Oxford, UK, 2005.

    QR CODE
    :::