| 研究生: |
楊庭越 Ting-Yueh Yang |
|---|---|
| 論文名稱: |
具功因修正之半橋LLC諧振轉換器設計與實現 Design and Implementation of Half-Bridge LLC Resonant Converter with Power Factor Correction |
| 指導教授: |
徐國鎧
Kuo-Kai Shyu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | LLC諧振轉換器 、升壓型功率因數修正器 、零電壓切換 、一階諧波近似法 |
| 外文關鍵詞: | LLC resonant converter, boost power factor corrector, zero-voltage switching, first harmonic approximation |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要為研製一高功因與高效率之LLC諧振轉換器。此電源供應器之電路架構前級採用升壓型功率因數修正器,來減少電流諧波成份並使輸入電流與輸入電壓同相位,以提高電路之功率因數,後級採用半橋LLC諧振轉換器,利用功率開關之寄生電容及二極體使其達成零電壓切換,來降低切換損失,以達到高功率密度及高轉換效率之要求。本論文除了說明兩個電路架構的動作原理外,並詳述電路之設計考量與所選用之元件參數,而LLC諧振電路分析是使用一階諧波近似法,並搭配Matlab來模擬電壓增益對頻率響應圖,了解品質因數與電感比率對電路特性的影響。本論文實作出一台250W之AC/DC電源供應器,其輸入電壓為90 ~ 264 VAC,輸出直流電壓53V,滿載輸出電流4.72A,整體平均功因達0.94以上,平均效率可達90%且最高效率接近94%,最後,以實驗結果驗證理論分析,並研擬未來研究方向。
This thesis focuses on the design and implementation of a high power factor and efficiency LLC Resonant Converter. The front-end part of the converter is a boost power factor corrector (PFC), used not only to eliminate the current harmonics but also to raise the power factor (PF). The second stage is a half-bridge LLC Resonant Converter. To achieve high power density and high conversion efficiency requirements, the LLC resonant converter utilizes the parasitic capacitances and diodes of the power switch to achieve ZVS, which reduces the switching loss. Besides, this thesis explains the operating principle of the two circuit architectures, and the detail design considerations of component parameters. All the analysis, design and simulation of the LLC resonant circuit are based on the first harmonic approximation (FHA) of the circuit. This thesis designs a 250W AC to DC converter with ac input voltage is 90 ~ 264VAC, output voltage and rated current are 53V and 4.72A respectively. The overall PF is above 0.94. The overall average efficiency can reach 90% and its maximum efficiency is close to 94% for the full load condition. Finally, experiment results are given to verify theoretical analysis. Moreover, future research directions are indicated.
[1] W. J. Gu and K. Harada, “A new method to regulate resonant converters,” IEEE Trans. on Power Electronics, vol. 3, no. 4, pp. 430-439, 1988.
[2] I. Batarseh, “Resonant converter topologies with three and four energy storage elements,” IEEE Trans. on Power Electronics, vol. 9, no. 1, pp. 64-73, 1994.
[3] A. K. S. Bhat, “Analysis, optimization and design of a series-parallel resonant converter,” in Proc. IEEE APEC, pp. 155-164, 1990.
[4] F. C. Lee, “High-frequency quasi-resonant converter technologies,” Proceedings of the IEEE, vol. 76, no. 4, pp. 377-390, 1988.
[5] K. H. Liu and F. C. Lee., “Zero-voltage switching technique in DC-DC converters,” IEEE Trans. on Industrial Electronics, vol. 5, no. 3, pp. 293-304 1986.
[6] R. Liu, and C. Q. Lee, “Analysis and design of LLC-type series resonant convertor,” IEE Electron Letter, vol. 24, no.24 , pp. 1517 -1519,1988
[7] Energy Star, 2007: http://www.energystar.gov/
[8] European Commission, 2007: http://ec.europa.eu/index_en.htm
[9] B. Wang, X. Xin, “Analysis and Implementation of LLC Burst Mode for Light Load Efficiency Improvement,” in Proc. IEEE APEC, pp. 58-64, 2009.
[10] W. Feng, F.-C. Lee, “LLC resonant converter burst mode control with constant burst time and optimal switching pattern,” in Proc. IEEE APEC, pp. 6-12, 2011.
[11] R. Beiranvand, “Optimizing the LLC–LC Resonant Converter Topology for Wide-Output-Voltage and Wide-Output-Load Applications,” IEEE Trans. on Power Electronics, vol. 26, pp. 3192-3204, 2011
[12] S. Kim and P. N. Enjeti, “A Modular Single-Phase Power-Factor- Correction Scheme With a Harmonic Filtering Function,” IEEE Trans. on Industrial Electronics, vol. 50, No. 2, pp. 328-335, Apr., 2003.
[13] N. Mohan, T.-M. Undeland, and W.-P. Robbins, “Power electronics,” Third Edition, John Wiley & Sons, 2002.
[14] K. Raggl, T. Nussbaumer, G. Doerig, J. Biela and J. W. Kolar, “Comprehensive Design and Optimization of a High-Power-Density Single-Phase Boost PFC,” IEEE Trans. on Power Electronics, vol. 56, pp. 2574-2587, Jul., 2009.
[15] M. Matsuo, K. Matsui, I. Yamamoto and F. Ueda, “A comparison of various DC-DC converters and their application to power factor correction,” IEEE Industrial Electronics Society, vol. 2, pp. 1007-1013, Oct., 2000.
[16] M. S. Dawande and G. K Dubey, “Programmable input power factor correction method for switch-mode rectifiers,” IEEE Trans. on Power Electronics, vol. 11, pp. 585-591, Jul., 1996.
[17] C. A. Canesin, and I. Barbi, “Analysis and Design of Constant-Frequency Peak-Current-Controlled High-Power-Factor Boost Rectifier with Slope Compensation,” in Proc. IEEE APEC, pp. 807-813, 1996.
[18] P. J. Villegas, J. Sebastian, M. Hernando, F. Nuno and J. A. Martinez, “Average current mode control of series-switching post-regulators used in power factor correctors,” IEEE Trans. on Power Electronics, vol. 15, pp. 813-819, Sept., 2000.
[19] R. Srinivasan and R. Oruganti, “ A unity power factor converter using half-bridge boost topology,"IEEE Trans. on Power Electronics, vol. 13, No. 3, pp. 487-500, May, 1998.
[20] L. Huber, B. T. Irving and M. M. Jovanovic, “Open-loop control methods for interleaved DCM/CCM boundary boost PFC converters,” IEEE Trans. on Power Electronics, vol. 23, No. 4, pp. 1649-1657, Jul., 2008.
[21] J. W. Kim, S. M. Choi and K. T. Kim, ”Variable on-time control of the critical conduction mode boost power factor correction converter to improve zero-crossing distortion,” in Proc. IEEE PEDS, pp. 1542-1546, 2005.
[22] G. C. Chryssis, “High Frequency Switching Power Supplies: Theory & Design,” McGraw-Hill, 1989.
[23] A. I. Pressman, “Switching Power Supply Design,” Second Edition, McGraw-Hill, 1999.
[24] G. C Hsieh, C. Y. Tsai, and S. H. Hsieh, “Design considerations for LLC series-resonant converter in two-resonant regions,” in Proc. IEEE PESC, pp. 731-736, 2007.