| 研究生: |
張華屹 Hua-Yi Chang |
|---|---|
| 論文名稱: |
合成氣固態氧化物燃料電池性能與穩定性量測 Measurements of cell performance and stability for syngas solid oxide fuel cells |
| 指導教授: |
施聖洋
Shenq-yang Shy |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 加壓型固態氧化物燃料電池 、合成氣 、電池性能 、電化學阻抗頻譜 |
| 外文關鍵詞: | Pressurized SOFC, Syngas, Cell Performance, Electrochemistry Impedance Spectroscopy |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用陽極支撐鈕扣型全電池於已建立之加壓型固態氧化物燃料電池(SOFC)實驗平台,量測合成氣(35% H2 / 65% CO)燃料,在不同操作環境下,其電池性能以及電化學阻抗頻譜之變化。當操作溫度從750°C提升到850°C,合成氣操作在0.8 V下之電池性能,可從947 mWcm-2增加到1146 mWcm-2,提升了21%。這是因為溫度上升可以提升電解質的離子傳導性,進而降低電池歐姆阻抗,同時也可減小活化極化。使用合成氣在750°C從1大氣壓加壓至3大氣壓,電池開路電壓(open circuit voltage, OCV)和最大功率密度均有明顯的提升,這是因為加壓可以增加反應氣體的體積莫耳濃度也可以增加電極表面的氣體覆蓋率,進而減少濃度極化和活化極化,但歐姆阻抗則不受操作壓力的影響而維持定值。在合成氣燃料加入3% H2O操作於700°C時,會因為水分子堵塞氣體擴散之孔洞,進而並降低反應速率,造成電池性能和OCV降低。使用合成氣在一大氣壓分別於700°C和750°C下進行電池穩定性測試,發現操作在750°C時,電池可以穩定操作25小時幾乎沒有性能衰退。但在700°C時,碳沉積明顯出現,甚至會造成陽極氣體管路的堵塞。所以,使用合成氣為燃料時,於常壓下溫度應高於700°C,以避免嚴重之碳沉積問題。同樣地,使用合成氣於750°C和3大氣壓條件下,進行電池性能穩定性測試,電池性能可維持穩定一段時間,10小時之後,碳沉積會越來越嚴重,逐漸影響電池性能,造成電池性能衰退。所以,在加壓條件下,需要更高的操作溫度來克服碳沉積的問題。在700°C條件下,進行乾和加濕(3% H2O)的合成氣穩定性實驗的比較,發現加濕之後可使電池維持穩定操作37小時,這是因為水可以和碳發生反應,降低碳沉積的影響。以上之實驗結果,有助於了解合成氣於SOFC在不同操作環境之碳沉積現象和電池性能變化,這對未來 SOFC 欲使用合成氣為燃料進行發電,在基礎知識上,有所助益。
This thesis applies the anode-supported cell to test the cell performance and electrochemical impedance spectroscopy at different operating conditions using syngas (35% H2 / 65% CO) as a fuel in a pressurized solid oxide fuel cell testing platform. When the operating temperature increases from 750°C to 850°C, the cell performance at 0.8 V increases from 947 mWcm-2 to 1146mWcm-2. Because the increase of the operating temperature can enhance the ionic conductivity of the electrolyte which can reduce the ohmic impedance and also it can reduce the activation polarization. The usage of syngas at elevated pressure from 1 atm to 3 atm at 750°C can significantly increase the open circuit voltage (OCV) and the power density. This is because pressurization can increase the molar concentration of the reaction gas and the gas coverage on the electrode surface, thereby reducing concentration and activation polarizations. However, the ohmic resistance remains the same independent of pressure. The addition of 3% H2O to syngas fuel at 700°C results in the reduction of cell performance and OCV. This is because the water molecules can block the pores of gas diffusion and reduce the reaction rate. The stability tests of syngas SOFC under atmospheric pressure at two different temperatures: 700°C and 750°C show that at 750°C the cell can be stably operated for 25 hours without any decay of cell power density. But the carbon deposition appears at 700°C getting worse with time and eventually blocking the anode gas pipeline. Thus, when using syngas as a fuel at 1 atm, the cell operating temperature should be higher than 700°C to avoid serious carbon deposition problem. Similarly, we conduct the cell stability test at 750°C and at 3 atm. Results show that the cell performance can remain stable for a period of time up to 10 hours. After 10 hours, the carbon deposition starts to appear and the cell performance is gradually decaying. Hence, at elevated pressure, the higher operating temperature above 750°C is needed to overcome the carbon deposition problem. Moreover, at 700°C, we compare the stability tests of both dry and humidified (3% H2O) syngas SOFCs. Results show that the humidification can extend the cell longevity. This is because water can react with carbon resulting in a decrease of carbon deposition. Finally, these results help our understanding of syngas SOFCs operated at different conditions and their associated carbon deposition phenomena, which should be useful for future power generation.
[1] H. Yokokawa, H. Tu, B. Iwanschitz, A. Mai, “Fundamental mechanisms limiting solid oxide fuel cell durability,” Journal of Power Sources, Vol. 182, pp. 400-412, 2008.
[2] M.A. Buccheri, A. Singh, J.M. Hill, “Anode- versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performance and carbon formation for the direct utilization of dry methane,” Journal of Power Sources, Vol. 196, pp. 968-976, 2011.
[3] J. Liu, S.A. Barnett, “Operation of anode-supported solid oxide fuel cells on methane and natural gas,” Solid State Ionics, Vol. 158, pp. 11-16, 2003.
[4] M.D. Gross, J.M. Vohs, R.J. Gorte, “Recent progress in SOFC anodes for direct utilization of hydrocarbons,” Journal of Materials Chemistry, Vol. 17, pp. 3071-3077, 2007
[5] R.S. Gemmen, J. Trembly, “On the mechanisms and behavior of coal syngas transport and reaction within the anode of a solid oxide fuel cell,” Journal of Power Sources, Vol. 161, pp. 1084-1095, 2006.
[6] 鄭浩昇,加壓型固態氧化物燃料電池量測與分析:壓力、溫度與質量流率效應,碩士論文,國立中央大學,2012。
[7] 謝易達,加壓型 SOFC 陽極支撐與電解質支撐單電池堆量測與分析,碩士論文,國立中央大學,2013。
[8] 吳佩真,加壓鈕扣型陽極支撐 SOFC 實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,2013。
[9] 李雪茹,加壓 SOFC 陰極半電池實驗研究,碩士論文,國立中央大學,2013。
[10] P.C. Wu, H.S. Jheng, S.S. Shy, “Electrochemical impedance measurement and analysis of anodic concentration polarization for pressurized solid oxide fuel cells,” Journal of The Electrochemical Society, Vol. 161, pp. F513-F517, 2014.
[11] J. Hanna, W.Y. Lee, Y. Shi, A.F. Ghoniem, “Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels,” Progress in Energy and Combustion Science, Vol. 40, pp. 74-111, 2014.
[12] R.J. Kee, H. Zhu, A.M. Sukeshini, G.S. Jackson, “Solid oxide fuel cells: operating principles, current challenges, and the role of syngas,” Combustion Science and Technology, Vol. 180, pp. 1207-1244, 2008.
[13] S.C. Singhal, K. Kendall, “High-temperature solid oxide fuel cells: fundamentals, design and applications,” Elsevier, 2003.
[14] N. Laosiripojana, W. Wiyaratn, W. Kiatkittipong, A. Arpornwichanop, A. Soottitantawat, S. Assabumrungrat, “Reviews on solid oxide fuel cell technology,” Engineering Journal, Vol. 13, pp. 65-84, 2009.
[15] 李信宏,棋盤式雙極板尺寸流道效應對固態氧化物燃料電池性能之影響,碩士論文,國立中央大學,2010。
[16] S.H. Chan, K.A. Khor, Z.T. Xia, “A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness,” Journal of Power Sources, Vol. 93, pp. 130-140, 2001.
[17] C.C. Liu, S.S.Shy, C.W. Chiu, M.W. Peng, H.J. Chung, “Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment,” International Journal of Hydrogen Energy, Vol. 36, pp. 8595-8603, 2011.
[18] K. Sasaki, Y. Hori, R. Kikuchi, A. Ueno, H. Takeuchi, M. Aizawa, K. Tsujimoto, H. Tajiri, H. Nishikawa, Y. Uchida, “Current-voltage characteristics and impedance analysis of solid oxide fuel cells for mixed H2 and CO gases,” Journal of The Electrochemical Society, Vol. 149, pp. A227-A233, 2002.
[19] H. Miao, W.G. Wang, T.S. Li, T. Chen, S.S. Sun, C. Xu, “Effects of coal syngas major compositions on Ni/YSZ anode-supported solid oxide fuel cells,” Journal of Power Sources, Vol. 195, pp. 2230-2235, 2010.
[20] X.-F. Ye, S.R. Wang, J. Zhou, F.R. Zeng, H.W. Nie, T.L. Wen, “Assessment of the performance of Ni-yttria-stabilized zirconia anodes in anode-supported solid oxide fuel cells operating on H2–CO syngas fuels,” Journal of Power Sources, Vol. 195, pp. 7264-7267, 2010.
[21] R. Suwanwarangkul, E. Croiset, E. Entchev, S. Charojrochkul, M.D. Pritzker, M.W. Fowler, P.L. Douglas, S. Chewathanakup, H. Mahaudom, “Experimental and modeling study of solid oxide fuel cell operating with syngas fuel,” Journal of Power Sources, Vol. 161, pp. 308-322, 2006.
[22] Z.R. Xu, X.Z. Fu, J.L. Luo, K.T. Chuang, “Carbon deposition on vanadium-based anode catalyst for sofc using syngas as fuel,” Journal of The Electrochemical Society, Vol. 157, pp. B1556-B1560, 2010.
[23] H. Miao, G. Liu, T. Chen, C. He, J. Peng, S. Ye, W.G. Wang, “Behavior of anode-supported SOFCs under simulated syngases,” Journal of Solid State Electrochemistry, Vol. 19, pp. 639-646, 2014.
[24] T. Chen, W.G. Wang, H. Miao, T. Li, C. Xu, “Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas,” Journal of Power Sources, Vol. 196, pp. 2461-2468, 2011.
[25] V. Alzate-Restrepo, J.M. Hill, “Carbon deposition on Ni/YSZ anodes exposed to CO/H2 feeds,” Journal of Power Sources, Vol. 195, pp. 1344-1351, 2010.
[26] C. Li, Y. Shi, N. Cai, “Elementary reaction kinetic model of an anode-supported solid oxide fuel cell fueled with syngas,” Journal of Power Sources, Vol. 195, pp. 2266-2282, 2010.
[27] J. Xizo, Y. Xie, J. Liu, M. Liu, “Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels,” Journal of Power Sources, Vol. 268, pp. 508-516, 2014.
[28] P.C. Wu, S.S. Shy, “Cell performance, impedance, and various resistances measurements of an anode-supported button cell using a new pressurized solid oxide fuel cell rig at 1–5 atm and 750–850°C,” Journal of Power Sources, Vol. 362, pp. 105-114, 2017.
[29] C.M. Huang, S.S. Shy, H.H. Li, C.H. Lee, “The impact of flow distributors on the performance of planar solid oxide fuel cell,” Journal of Power Sources, Vol. 195, pp. 6280-6286, 2010.
[30] V.A.C. Haanappel, M.J. Smith, “A review of standardising SOFC measurement and quality assurance at FZJ,” Journal of Power Sources, Vol. 171, pp. 169-178, 2007.
[31] J. Nielsen, M. Mogensen, “SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study,” Solid State Ionics, Vol. 189, pp. 74-81, 2011.
[32] S. Primdahl, M. Mogensen, “Gas conversion impedance a test geometry effect in characterization of solid oxide fuel cell anodes,” Journal of The Electrochemical Society, Vol. 145, pp. 2431-2438, 1998.
[33] S. Primdahl, M. Mogensen, “Gas diffusion impedance in characterization of solid oxide fuel cell anodes,” Journal of The Electrochemical Society, Vol. 146, pp. 2827-2833, 1999.
[34] M. Henke, J. Kallo, K.A. Friedrich, W.G. Bessler, “Influence of Pressurisation on SOFC Performance and Durability: A Theoretical Study,” Fuel Cells, Vol. 11, pp. 581-591, 2011.
[35] H. Tu, U. Stimming, “Advances, aging mechanisms and lifetime in solid-oxide fuel cells,” Journal of Power Sources, Vol. 127, pp. 284-293, 2004.
[36] J. Mermelstein, M. Millan, N. Brandon, “The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes,” Journal of Power Sources, Vol. 195, pp. 1657-1666, 2010.
[37] H. Sumi, K. Ukai, Y. Mizutani, H. Mori, C. Wen, H. Takahashi, O. Yamamoto, “Performance of nickel-scandia-stabilized zirconia cermet anodes for SOFCs in 3% H2O-CH4,” Solid State Ionics, Vol. 174, pp. 151-156, 2004.