跳到主要內容

簡易檢索 / 詳目顯示

研究生: 彭泰淇
Tai-Chi Peng
論文名稱: GoSE: An Approach to Group IoT Devices in Smart Environments
指導教授: 許富皓
Fu-Hau Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 41
中文關鍵詞: 物聯網物聯網裝置分組錯誤裝置偵測可互相驗證裝置智慧環境
外文關鍵詞: Internet of Thing, IoT devices grouping, faulty device detection, mutually verifiable devices, smart environment
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來,IoT(Internet of Thing)技術結合感測器(sensor)和執行器(actuator)的應用服務,被應用在人類生活的各個領域,例如:智慧家庭、智慧城市、智慧工廠等,為人類生活及生產產能帶來許多便利性;然而,IoT裝置遍佈在複雜的環境中,容易因為各種因素造成錯誤的感測訊息,原因包含硬體故障、人為因素、惡意攻擊等,隨著布建在智慧環境的感測器和執行器愈來愈多,偵錯的難度和成本也愈來愈高。

      本論文提出一種對智慧環境中感測器及執行器進行分組的方法,透過定義裝置關聯,將可以互相驗證的裝置分為一組,縮小偵錯範圍以提升偵錯效率,減少偵錯運算成本。


      In recent years, services which combine IoT(Internet of Things) technology, sensors and actuators have been applied in various fields of human life, such as smart homes, smart cities, smart factories, etc. Since IoT devices bring convenience to our life; however, deploying light weight IoT devices in such complex environments may cause failure behavior due to various factors, including hardware failure, human mistakes, malicious attacks, etc.

      This paper proposes an approach to group IoT devices in a smart environment. By defining devices relations, we can find devices which can be mutually verified to narrow down the scope, improve efficiency and reduce the cost of detecting faulty IoT devices.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 第 1 章 緒論 1 第 2 章 背景介紹 3  2.1 Sensors and Actuators 3  2.2 Rule-based Expert System 4  2.3 Prolog 6 第 3 章 相關研究 7  3.1 DICE 7  3.2 PEEVES 8 第 4 章 系統設計 10  4.1 系統架構 10  4.2 主要元件 11   4.2.1 Initializer 11   4.2.2 Grouping Engine 12   4.2.3 Group Manager 13   4.2.4 Runtime Verification 13 第 5 章 系統評估 15  5.1 實驗設計 15  5.2 實驗結果 16   5.2.1 分組結果 17   5.2.2 驗證結果 18 第 6 章 討論 21  6.1 限制 21  6.2 未來展望 21 第 7 章 總結 22 參考文獻 23 附錄 A Rule Base 24

    [1] K. Ni, N. Ramanathan, M.N.H. Chehade, L. Balzano, S. Nair, S. Zahed, E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, “Sensor network data fault types,” ACM Transactions on Sensor Networks (TOSN), vol. 5, no. 3, pp. 1–29, 2009.
    [2] T. Kavitha and D. Sridharan, “Security vulnerabilities in wireless sensor networks: A survey,” Journal of information Assurance and Security, vol. 5, no. 1, pp. 31–44, 2010.
    [3] T. Zillner and S. Strobl, “Zigbee exploited: The good, the bad and the ugly,” Black Hat–2015 https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBeeExploited-The-Good-The-Bad-And-The-Ugly-wp.pdf, 2015.
    [4] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “Iot goes nuclear: Creating a zigbee chain reaction,” in 2017 IEEE Symposium on Security and Privacy (SP), IEEE, 2017, pp. 195–212.
    [5] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging smart home applications,” in 2016 IEEE symposium on security and privacy (SP), IEEE, 2016, pp. 636–654.
    [6] J. Choi, H. Jeoung, J. Kim, Y. Ko, W. Jung, H. Kim, and J. Kim, “Detecting and identifying faulty iot devices in smart home with context extraction,” in 2018 48th Annual IEEE/IFIP International Conferenceon Dependable Systems and Networks (DSN), 2018, pp. 610–621.
    [7] S. Birnbach and S. Eberz, “Peeves: Physical event verification in smart homes,” 2019.
    [8] D. Miljković, “Fault detection methods: A literature survey,” in 2011 Proceedings of the 34th international convention MIPRO, IEEE, 2011, pp. 750–755.
    [9] C. Angeli et al.,“Diagnostic expert systems: From expert's knowledge to real-time systems,”Advanced knowledge based systems: Model, applications & research, vol. 1, pp. 50–73, 2010.
    [10] U. Endriss,“An introduction to prolog programming,”Institution for logic language and computation, 2007.
    [11] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “Casas: A smart home in a box,” Computer, vol. 46, no. 7, pp. 62–69, 2013.

    QR CODE
    :::