| 研究生: |
彭泰淇 Tai-Chi Peng |
|---|---|
| 論文名稱: | GoSE: An Approach to Group IoT Devices in Smart Environments |
| 指導教授: |
許富皓
Fu-Hau Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 物聯網 、物聯網裝置分組 、錯誤裝置偵測 、可互相驗證裝置 、智慧環境 |
| 外文關鍵詞: | Internet of Thing, IoT devices grouping, faulty device detection, mutually verifiable devices, smart environment |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,IoT(Internet of Thing)技術結合感測器(sensor)和執行器(actuator)的應用服務,被應用在人類生活的各個領域,例如:智慧家庭、智慧城市、智慧工廠等,為人類生活及生產產能帶來許多便利性;然而,IoT裝置遍佈在複雜的環境中,容易因為各種因素造成錯誤的感測訊息,原因包含硬體故障、人為因素、惡意攻擊等,隨著布建在智慧環境的感測器和執行器愈來愈多,偵錯的難度和成本也愈來愈高。
本論文提出一種對智慧環境中感測器及執行器進行分組的方法,透過定義裝置關聯,將可以互相驗證的裝置分為一組,縮小偵錯範圍以提升偵錯效率,減少偵錯運算成本。
In recent years, services which combine IoT(Internet of Things) technology, sensors and actuators have been applied in various fields of human life, such as smart homes, smart cities, smart factories, etc. Since IoT devices bring convenience to our life; however, deploying light weight IoT devices in such complex environments may cause failure behavior due to various factors, including hardware failure, human mistakes, malicious attacks, etc.
This paper proposes an approach to group IoT devices in a smart environment. By defining devices relations, we can find devices which can be mutually verified to narrow down the scope, improve efficiency and reduce the cost of detecting faulty IoT devices.
[1] K. Ni, N. Ramanathan, M.N.H. Chehade, L. Balzano, S. Nair, S. Zahed, E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, “Sensor network data fault types,” ACM Transactions on Sensor Networks (TOSN), vol. 5, no. 3, pp. 1–29, 2009.
[2] T. Kavitha and D. Sridharan, “Security vulnerabilities in wireless sensor networks: A survey,” Journal of information Assurance and Security, vol. 5, no. 1, pp. 31–44, 2010.
[3] T. Zillner and S. Strobl, “Zigbee exploited: The good, the bad and the ugly,” Black Hat–2015 https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBeeExploited-The-Good-The-Bad-And-The-Ugly-wp.pdf, 2015.
[4] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “Iot goes nuclear: Creating a zigbee chain reaction,” in 2017 IEEE Symposium on Security and Privacy (SP), IEEE, 2017, pp. 195–212.
[5] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging smart home applications,” in 2016 IEEE symposium on security and privacy (SP), IEEE, 2016, pp. 636–654.
[6] J. Choi, H. Jeoung, J. Kim, Y. Ko, W. Jung, H. Kim, and J. Kim, “Detecting and identifying faulty iot devices in smart home with context extraction,” in 2018 48th Annual IEEE/IFIP International Conferenceon Dependable Systems and Networks (DSN), 2018, pp. 610–621.
[7] S. Birnbach and S. Eberz, “Peeves: Physical event verification in smart homes,” 2019.
[8] D. Miljković, “Fault detection methods: A literature survey,” in 2011 Proceedings of the 34th international convention MIPRO, IEEE, 2011, pp. 750–755.
[9] C. Angeli et al.,“Diagnostic expert systems: From expert's knowledge to real-time systems,”Advanced knowledge based systems: Model, applications & research, vol. 1, pp. 50–73, 2010.
[10] U. Endriss,“An introduction to prolog programming,”Institution for logic language and computation, 2007.
[11] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “Casas: A smart home in a box,” Computer, vol. 46, no. 7, pp. 62–69, 2013.