跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡正翰
Cheng-Han Tsai
論文名稱: 應用遺傳演算法探討海洋放流管之優化方案
The Optimization of Ocean Outfalls Using Genetic Algorithms
指導教授: 朱佳仁
Chia-Ren Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 156
中文關鍵詞: 遺傳演算法海洋放流管最佳化優化多孔擴散管豎管
外文關鍵詞: Ocean outfalls, Disposal, Multiport diffuser, Riser, Optimization, Genetic Algorithm, Sea outfalls
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用能量法的觀點,發展出多孔海洋放流管內部水力計算程式,能夠計算海洋放流管內部各個參數分佈。另外,搭配遺傳演算法,以海洋放流管硬體建置之幾個主要參數:擴散管長度、豎管數目、擴散管管徑、排放口直徑為變數,探討在不同的適合度函數條件下,海洋放流管建置之優化解。
    研究結果顯示:(1) 不當的海洋放流管建置參數組合,將使加壓站的操作成本大量增加,而這是前人所未加以考慮的;(2) 隨著設計操作年限的增加,優化所得之年操作成本隨著減少;(3)若考慮之設計操作年限很短,可考慮採用單排放口之海洋放流管,以降低海洋放流管興建成本,但這會造成加壓水頭升高,單年加壓站操作成本亦提高;而若考慮之設計操作年限增長,可考慮採用較多孔數之海洋放流管,可達到降低加壓水頭、加壓站操作成本的效果;(4) 非等管徑擴散管在流速分佈均勻度以及加壓水頭的考量下,均優於等管徑擴散管;(5)豎管數目愈少,等值排放口直徑愈小,擴散管直徑愈小,此三種情形都會造成加壓水頭的大量增加;(6) 豎管數目愈少,等值排放口直徑愈小,豎管間距愈大,此三種情形都會造成稀釋率上升;(7)豎管數目愈少,等值排放口直徑愈小,會使出口密差福祿數增加。


    The primary purpose of a multiport diffuser is to distribute the effluent evenly along the length of diffuser pipe. Besides that, it is also desirable to have the head loss as low as possible so that the available head is sufficient to prevent sea water intrusion and sediment deposition in the diffuser pipe. At the same time, it is favorable to have high port velocity for rapid mixing. In this study, a computation model for the discharge parameters, such as diffuser length, number of risers, diameters of diffuser and port, of multiport diffuser is developed. The optimalization of the above parameters is investigated by using the Genetic Algorithm (GA).
    The results show that: (1) Inappropriate combination of ocean outfall parameters cause huge influence on the operational cost of pumping station. (2) The pumping cost per each will decrease as the operation year increase. (3) The diffuser with non-uniform diameter has better performance than the uniform diameter diffuser. (4) The pumping head increases as the number of risers, port diameter and diffuser diameter decrease. (5) The dilution rate increases as the number of risers, port diameter decrease and port spacing increases. (6) The densimetric Froude number increases as the number of risers and port diameter decrease. (7) If the effluent experiences a cross flow, the port spacing can be reduced.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 本文架構 3 第二章 海洋放流管 4 2.1 簡介 4 2.2 多孔海洋擴散管之水力計算 8 2.3 稀釋率計算 17 2.4 海洋放流擴散模式 24 2.5 各國現有的海洋放流管 28 2.6 海洋放流相關法令規定 31 第三章 優化的方法 35 3.1 優化方法的定義 35 3.2 常見優化方法應用簡介 37 3.3本研究優化模式建構 46 3.4 各項成本函數之推導 48 3.4.1 放流管建造成本函數 48 3.4.2 加壓站建造成本函數 55 3.4.3 加壓站操作成本函數 56 3.5 相關領域優化成果 57 第四章 結果與討論 58 4.1 擴散管內部水力計算模式驗證 58 4.2 敏感度分析 66 4.2.1 各參數與加壓水頭的關係 67 4.2.2 各參數與出口密差福祿數的關係 67 4.2.3 各參數與近堿稀釋率的關係 68 4.3 選定GA優化參數 69 4.4 權重係數與設計操作年限對優化結果的影響 72 4.4.1等管徑擴散管優化之結果 76 4.4.2非等管徑擴散管優化之結果 78 4.4.3 小結 79 4.5 橫向流對稀釋率的影響 81 4.6 等管徑擴散管與非等管徑擴散管比較 84 第五章 結論與建議 87 5.1 結論: 87 5.2 建議: 88 參考文獻 144 中文參考文獻 144 英文參考文獻 146 附錄一 150 附錄二 154

    中文參考文獻
    張良正、蕭金財 (2002), “非拘限含水層之最佳抽水量管理規劃”, 中國土木水利工程學刊, 第十四卷, 第三期
    張進賢 (2002), “以序率規劃模式評估污水處理廠與海洋放流系統之優化擴建方案”, 國立成功大學環境工程研究所碩士論文
    陳莉、何智超 (2001), “遺傳演算法應用於下水道最佳化”, 第十二屆水利工程研討會, pp.c-209 ~ c-213
    何承嶧 (2000), “台灣地區公共下水道污水處理廠成本函數之分析研究”, 國立中興大學環境工程研究所碩士論文
    葉欣誠、郭彥宏 (2000), “高雄中洲污水處理廠及海洋放流管之成本分析與優選初探”, 第十三屆環境規劃與管理研討會論文集
    魏維國 (2000), “污水處理廠操作最佳化之研究”, 國立中央大學環境工程研究所碩士論文
    謝毓玲 (2000), “在總量管制下工業區污水處理廠之擴充策略”, 逢甲大學環境工程與科學學系碩士論文
    黃榮鑑、薛曙生 (1999), “海洋水污染擴散環境影響評估技術之研究成果報告書”, 行政院環境保護署
    黃榮鑑 (1988), “八里污水處理廠消化污泥海洋放流可行性研究”, 財團法人中興工程顧問社
    梁家寶 (1997), “大口徑海底管線設置之研討”, 土木水利, 第二十三卷, 第四期
    孫德敏 (1997), “工程最優化方法及應用”, 中國科學技術大學出版社
    葉欣誠、張乃斌 (1997), “應用灰色非線性規劃法於海岸污水處理與海洋放流系統之最佳化規劃”, 第十屆環境規劃與管理研討會論文集
    鄭瑞元 (1997), “多孔擴散管流量分佈之分析”, 國立中央大學土木工程學研究所碩士論文
    蕭文起、徐振盛 (1995), “污水工程設計”, 淑馨出版社, 台北
    吳東明、梁家寶 (1994), “海底管線之布設研討”, 土木水利, 第二十一卷, 第三期
    劉佳明、郭振明 (1983), “線性放水規則決定下游水庫容量之研究”, 台大農工所
    溫清光、高強、郭宏文 (1982), “線性規畫與混合整數線性規劃對下水道設計之應用與比較”, 中國土木水利工程學會第七屆廢水處理技術研討會論文集
    陳森淼、陳繼志 (1982), “高雄市都市污水海洋放流處理計劃”, 中國土木水利工程學會第七屆廢水處理技術研討會論文集
    英文參考文獻
    Akar, P.J. and Jirka, G.H. (1991), “CORMIX2: An Expert System for Hydrodynamic Mixing Zone Analysis of Conventional an Toxic Multiport Diffuser Discharges”, DeFrees Hydraulics Laboratory, Cornell University, Ithaca, NY.
    Chang, N.B. and Wang, S.F. (1995), “A grey nonlinear programming approach for planning coastal wastewater treatment and disposal systems”, J. Water Science and Technology, Vol.32, No.2, pp.19-29
    Chu, V.H. (1977), “A Line-impulse Model for Buoyant Jets in a Crossflow“, Heat Transfer and Turbulent Bouyant Convection, eds. by Spalding D.B. and Afgan N.
    Carroll, D.L. (2001), “Program Gafortran: version 1.7a”, CU Aerospace, 2004 South Wright Street Extended Urbana, IL 61802
    Davis, L.R. (1999), “Fundamentals of Enviromental Discharge Modeling”, CRC Press., pp.20-29
    Doneker, R.L. and Jirka, G.H. (1989), “CORMIX1: An Expert System for Hydrodynamic Mixing Zone Analysis of Conventional an Toxic Submerged Single Port Discharges”, DeFrees Hydraulics Laboratory, Cornell University, Ithaca, NY.
    Featherstone, R.E. and Karim El-Jumaily, K.K. (1983), “Optimal Diameter Selection for Pipe Networks”, J. Hydraulic Engineering, Vol.109, No.2, pp.221-234
    Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., and Brooks, N.H. (1979), “Mixing in Inland and Coastal Waters “, Academic Press, Inc., pp.412-441
    Goldberg, D.E. (1989), “Genetic Algorithms in Search, Optimization, and Machine Learning”, Addison-Wesley Publishing Company, Inc.
    Holland, J. (1975), “Adaptation in Natural and Artificial Systems“, University of Michigan Press.
    Jones, G.R., Nash, J.D., and Jirka, G.H. (1996), “CORMIX3: An Expert System for Mixing Zone Analysis and Prediction of Bouyant Surface Discharges”, DeFrees Hydraulics Laboratory, Cornell University, Ithaca, NY.
    Koh, R.C.Y., Isaacson, M.S., and Brooks, N.H. (1983), “Plume Dilution for Diffusers with Multiport Risers”, J. Hydraulic Engineering, Vol.109, No.2, pp.199-220
    Koh, R.C.Y., and Brooks, N.H. (1975), “Fluid Mechanics of Waste-Water Disposal in the Ocean”, Ann. Rev. Fluid Mech., Vol. 7, pp.187-211
    Lee, J.H.W. and Cheung, V. (1990), “Two Mathematical Models for a Round Buoyant Jet in Anambient Current: JETLAG and IMPLUSE”, User Guide prepared for Computational Fluid Mechanics.
    Rawn, A.M., Bowerman, F.R., and Brooks, N.H. (1960), “Diffusers for Disposal of Sewage in Seawater”, J. Sanitary Eng Div. ASCE, 86, pp.65-105
    Roberson, J.A., Cassidy, J.J. and Chaudhry, M.H. (1998), “Hydraulic Engineering”, John Wiley & Sons Inc.
    Roberts, P.J.W., Snyder, W.H., and Baumgartner, D.J. (1989a), “Ocean Outfalls. I: Submerged Wastefield Formation”, J. Hydraulic Engineering, ASCE, Vol.115, No.1, pp.1-25
    Roberts, P.J.W., Snyder, W.H., and Baumgartner, D.J. (1989b), “Ocean Outfalls. II: Spatial Evolution of Submerged Wastefield”, J. Hydraulic Engineering, ASCE, Vol.115, No.1, pp.26-48
    Roberts, P.J.W., Snyder, W.H., and Baumgartner, D.J. (1989c), “Ocean Outfalls. III: Spatial Evolution of Submerged Wastefield”, J. Hydraulic Engineering, ASCE, Vol.115, No.1, pp.49-70
    Roberts, P.J.W. (1994), “Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes”, Kluwer Academic Publishers., pp.441-464
    Roberts, P.J.W. (1996), “Environmental Hydraulics”, Kluwer Academic Publishers., pp.63-110
    Swamee, P.K., and Jain, A.K. (1976), “Explicit Equations for Pipe-Flow Problems”, J. Hydraulic Div. ASCE, pp.657-664
    Vasquez, J.A., Maier, H.R., Lence, B.J., and Tolson, B.A. (2000), “Achieving Water Quality System Reliability Using Genetic Algorithms”, J. Environmental Engineering, ASCE, Vol.126, No.10, pp.954-926
    Vitkovsky, J.P., Simpson, A.R., and Lambert, M.F. (2000), “Leak Detection and Calibration Using Transients and Genetic Algorithms”, J. Water Resources Planning and Management.
    Wallis, I.G. (1979), “Ocean Outfall Construction Costs”, J. Water Pollution Control Federation, Vol.51, No.5, pp.951-957
    Wood, I.R., Bell, R.G., and Wilkinson, D.L. (1993), “Ocean Disposal of Wastewater”, World Scientific Publishing Co., pp.129-136

    QR CODE
    :::