| 研究生: |
黃彥禎 Yen-Chen Huang |
|---|---|
| 論文名稱: |
利用微波水熱法提升SiO2@ZnIn2S4奈米光觸媒表面均質與結晶性及其光催化產氫研究 Improving Coverage and Crystallinity of SiO2@ZnIn2S4 Nanoparticles Using Microwave-assisted Hydrothermal Method for Photocatalytic Hydrogen Evolution |
| 指導教授: |
李岱洲
Tai-Chou Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 奈米光觸媒 、產氫 、殼層結構 、ZnIn2S4包覆二氧化矽 |
| 外文關鍵詞: | Nanoparticles photocatalyst, Hydrogen evolution, Core-shell structure, SiO2@ZnIn2S4 |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現代社會面臨能源以及環境危機,尋找乾淨的替代能源已為趨勢,太陽能因為取之無盡的太陽光照而具有最大的發展潛力,不過因為太陽能難以儲存,所以需要另尋方法儲存能量,其中一個儲存方式是將太陽能轉換成化學能,因此我們使用光觸媒接收太陽光能量後分解水產生氫氣的方式儲存太陽能。氫氣經過燃燒後只會產生能量以及水,是個乾淨無汙染的能源。
ZnIn2S4 (ZIS)是能隙值為2.4 eV的半導體可見光光觸媒,在太陽光的照射下會分解水產生氫氣。我們使用微波水熱法的方式合成ZIS光觸媒,之前的研究顯示如果將ZIS包覆在具有二氧化矽介電層外殼的金銀奈米粒子(GSNS@SiO2@ZIS)能夠藉由表面電漿效應有效地提升產氫效率,不過ZIS並不能均勻地包覆在GSNS@SiO2上,若能提升包覆的表面均質性與結晶性並且控制ZIS厚度,或許能夠更加理解影響產氫效率的因素。因為GSNS@SiO2合成不易,於是使用SiO2作為ZIS包覆的研究對象。
我們發現在純水溶液合成的SiO2@ZIS具有良好的結晶性,純乙醇合成的則是有較好的表面均質性,加入鹽酸控制在低pH值的情況下合成在兩種溶液中皆會提升結晶性,SiO2@ZIS的產氫效率隨著結晶性的增加而提升。乙醇與水的混和溶液結合了兩種溶液的優點,不過合成的SiO2@ZIS其性質卻難以詳細分析,雖然在不同比例混和溶液下合成不同層的ZIS能夠增加ZIS包覆SiO2的厚度,不能確實控制厚度以及只有外層ZIS參與分解水反應限制了重複包覆的實用性。最後我們在純乙醇溶液加入鹽酸合成SiO2@ZIS的方式達到提升表面均質以及結晶性的目的,並且能夠藉由改變ZIS前驅物的濃度控制ZIS的厚度。然而因為GSNS@SiO2與SiO2之間性質的差異,需要更長時間的研究才能將SiO2@ZIS相關的製程套用在GSNS@SiO2@ZIS上,不過也因如此我們對於使用複雜殼層結構光觸媒(GSNS@dielectirc@photocatalyst)優化太陽能產氫減少碳排放的目標又有了更進一步的發展。
Our society is facing growing challenges of energy and environment. In order to find clean and renewable energy resources instead of fossil fuels, many researchers worked hard and tried to find a way to solve the problem. Among these renewable energy resources, the biggest potential to develop is solar energy due to the endless of sun irradiation. To store the solar energy is another problem. One of the solutions is converting solar energy to chemical energy. So we use water-splitting photocatlyst to produce hydrogen under sun irradiation for energy storage. Hydrogen is a clean energy resource because it only produces water and energy after combustion.
ZnIn2S4 (ZIS) is a visible-light-driven photocatalyst with the energy band gap of 2.4 eV. We developed a microwave-assisted hydrothermal method to generate ZIS particles. In particular, our studies showed that the gold-silver nanoshells with SiO2 shell(GSNS@SiO2) embedded in ZIS matrix exhibited a unique plasmonic-enhanced photocatalytic hydrogen production. However, the coverage and thickness of ZIS on top of GS-NS were not precisely controlled. If we improve the crystallinity and coverage of ZIS to control shell thickness of ZIS, we can find out the factor which could affect hydrogen production efficiency. Because GSNS@SiO2 is hard to synthesize, our research is focusing on SiO2 core instead of GSNS@SiO2.
We found that SiO2@ZIS synthesized in pure water solution has better crystallinity, though synthesized in pure ethanol solution has better coverage. Adding HCl into both water and ethanol solution to lower pH condition would increase crystallinity, better crystallinity related to better hydrogen production efficiency. SiO2@ZIS synthesized in ethanol-water mixed solution would combine the advantage of two solutions, but the properties of the samples were too complex to analyze. Though ZIS shell could get thicker by repeating coating ZIS synthesized in different ratio of ethanol-water solution, not precisely controlling ZIS shell and only outer ZIS shell participating water-splitting reaction limited the use of repeating coating method. Finally we could increase crystallinity and coverage of SiO2@ZIS by adding HCl into pure ethanol solution, ZIS shell thickness could also be controlled by different concentration of ZIS precursor. However, due to the different properties between SiO2 core and GSNS@SiO2, it takes time to study SiO2@ZIS synthesis process applied to GSNS@SiO2. Thus, our facile procedure paves the way to generate a more complex structure GS-NS@dielectric@ photocatalyst, for optimization of solar hydrogen production.
1. Chu, S., Y. Cui, and N. Liu, The path towards sustainable energy. Nature Materials, 2016. 16: p. 16.
2. 陳致融、劉如熹,利用奈米金屬提高水分解產氫效率。科學發展專題報導,2015. 508:p6.
3. Hydrogen Scaling Up- A sustainable pathway for the global energy transition, Hydrogen Council, November 2017..
4. Korner, A. Technology Roadmap: Hydrogen and Fuel Cells. 2015.
5. Fujishima, A., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 37: p. 238.
6. Tentu, R.D. and S. Basu, Photocatalytic water splitting for hydrogen production. Current Opinion in Electrochemistry, 2017. 5(1): p. 56-62.
7. May, M.M., et al., Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nature Communications, 2015. 6: p. 8286.
8. Hu, S., et al., An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy & Environmental Science, 2013. 6(10): p. 2984-2993.
9. Maeda, K. and K. Domen, New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light. The Journal of Physical Chemistry C, 2007. 111(22): p. 7851-7861.
10. Tsuji, I., et al., Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures. Journal of the American Chemical Society, 2004. 126(41): p. 13406-13413.
11. Kudo, A., H. Kato, and I. Tsuji, Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting. Chemistry Letters, 2004. 33(12): p. 1534-1539.
12. Kudo, A., Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. International Journal of Hydrogen Energy, 2007. 32(14): p. 2673-2678.
13. Ismail, A.A. and D.W. Bahnemann, Photochemical splitting of water for hydrogen production by photocatalysis: A review. Solar Energy Materials and Solar Cells, 2014. 128: p. 85-101.
14. Grätzel, M., Photoelectrochemical cells. Nature, 2001. 414: p. 338.
15. Shen, S., L. Zhao, and L. Guo, ZnmIn2S3+m (m=1–5, integer): A new series of visible-light-driven photocatalysts for splitting water to hydrogen. International Journal of Hydrogen Energy, 2010. 35(19): p. 10148-10154.
16. Yang, J., et al., Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research, 2013. 46(8): p. 1900-1909.
17. Shen, S., et al., Microwave-assisted hydrothermal synthesis of transition-metal doped ZnIn2S4 and its photocatalytic activity for hydrogen evolution under visible light. Journal of Power Sources, 2011. 196(23): p. 10112-10119.
18. Chen, Y., et al., Hierarchical Core–Shell Carbon Nanofiber@ZnIn2S4 Composites for Enhanced Hydrogen Evolution Performance. ACS Applied Materials & Interfaces, 2014. 6(16): p. 13841-13849.
19. Kottmann, J.P., et al., Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B, 2001. 64(23): p. 235402.
20. Mock, J.J., et al., Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics, 2002. 116(15): p. 6755-6759.
21. Kelly, K.L., et al., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 2003. 107(3): p. 668-677.
22. Jie, C., et al., Nanogap Engineered Plasmon‐Enhancement in Photocatalytic Solar Hydrogen Conversion. Advanced Materials Interfaces, 2015. 2(14): p. 1500280.
23. Cushing, S.K., et al., Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. Journal of the American Chemical Society, 2012. 134(36): p. 15033-15041.
24. Li, C.-H., et al., Plasmonically Enhanced Photocatalytic Hydrogen Production from Water: The Critical Role of Tunable Surface Plasmon Resonance from Gold–Silver Nanoshells. ACS Applied Materials & Interfaces, 2016. 8(14): p. 9152-9161.
25. Chai, B., et al., Template-Free Hydrothermal Synthesis of ZnIn2S4 Floriated Microsphere as an Efficient Photocatalyst for H2 Production under Visible-Light Irradiation. The Journal of Physical Chemistry C, 2011. 115(13): p. 6149-6155.
26. Chen, Y., et al., Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different visible-light photocatalytic performance. Dalton Transactions, 2011. 40(11): p. 2607-2613.
27. Hu, X., et al., Rapid Mass Production of Hierarchically Porous ZnIn2S4 Submicrospheres via a Microwave-Solvothermal Process. Crystal Growth & Design, 2007. 7(12): p. 2444-2448.
28. Yu, Y., et al., Visible-light-driven ZnIn2S4/CdIn2S4 composite photocatalyst with enhanced performance for photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2013. 38(3): p. 1278-1285.
29. Wei, L., et al., MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Applied Catalysis B: Environmental, 2014. 144: p. 521-527.
30. Shen, S., et al., Improving visible-light photocatalytic activity for hydrogen evolution over ZnIn2S4: A case study of alkaline-earth metal doping. Journal of Physics and Chemistry of Solids, 2012. 73(1): p. 79-83.
31. Li, J., et al., Photoluminescence properties of transition metal-doped Zn-In-S/ZnS core/shell quantum dots in solid films. RSC Advances, 2016. 6(50): p. 44859-44864.
32. Shen, S., et al., Enhanced Photocatalytic Hydrogen Evolution over Cu-Doped ZnIn2S4 under Visible Light Irradiation. The Journal of Physical Chemistry C, 2008. 112(41): p. 16148-16155.
33. Li, F., et al., Hydrothermal synthesis of zinc indium sulfide microspheres with Ag+ doping for enhanced H2 production by photocatalytic water splitting under visible light. Catalysis Science & Technology, 2014. 4(4): p. 1144-1150.
34. Shen, S., L. Zhao, and L. Guo, Cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production. International Journal of Hydrogen Energy, 2008. 33(17): p. 4501-4510.
35. Bai, X. and J. Li, Photocatalytic hydrogen generation over porous ZnIn2S4 microspheres synthesized via a CPBr-assisted hydrothermal method. Materials Research Bulletin, 2011. 46(7): p. 1028-1034.
36. Shen, S., L. Zhao, and L. Guo, Crystallite, optical and photocatalytic properties of visible-light-driven ZnIn2S4 photocatalysts synthesized via a surfactant-assisted hydrothermal method. Materials Research Bulletin, 2009. 44(1): p. 100-105.
37. Chen, Z., et al., Low-Temperature and Template-Free Synthesis of ZnIn2S4 Microspheres. Inorganic Chemistry, 2008. 47(21): p. 9766-9772.
38. Serrano, D.P., et al., Synthesis and crystallization mechanism of zeolite TS-2 by microwave and conventional heating. Microporous and Mesoporous Materials, 2004. 69(3): p. 197-208.
39. Zhu, Y.-J. and F. Chen, Microwave-Assisted Preparation of Inorganic Nanostructures in Liquid Phase. Chemical Reviews, 2014. 114(12): p. 6462-6555.
40. 劉思屏, 微波水熱法製備SiO2@ZnIn2S4奈米粒子及其光催化產氫研究, in 化學工程與材料工程學系. 2016, 國立中央大學.
41. Giesche, H., Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics. Journal of the European Ceramic Society, 1994. 14(3): p. 189-204.
42. Stöber, W., A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 1968. 26(1): p. 62-69.
43. Sapsford, K.E., et al., Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews, 2013. 113(3): p. 1904-2074.
44. Gude, K. and R. Narayanan, Synthesis and Characterization of Colloidal-Supported Metal Nanoparticles as Potential Intermediate Nanocatalysts. The Journal of Physical Chemistry C, 2010. 114(14): p. 6356-6362.
45. Wu, J., et al., Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction. Chemical Physics Letters, 2014. 591: p. 227-232.
46. Gosavi, R.K. and C.N.R. Rao, Infrared absorption spectra of metal complexes of alkylthioureas and some related ligands. Journal of Inorganic and Nuclear Chemistry, 1967. 29(8): p. 1937-1945.
47. Shen, S., L. Zhao, and L. Guo, Morphology, structure and photocatalytic performance of ZnIn2S4 synthesized via a solvothermal/hydrothermal route in different solvents. Journal of Physics and Chemistry of Solids, 2008. 69(10): p. 2426-2432.