| 研究生: |
蔡皓州 Hao-Chou Tsai |
|---|---|
| 論文名稱: |
使用空間相關性分析來探討共質心線段式佈局在運算放器的影響 Spatial Correlation Analysis of Common-Centroid Layout Placement for an OpAmp |
| 指導教授: |
陳竹一
Jwu-e Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 空間相關性 |
| 外文關鍵詞: | Spatial Correlation |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電晶體進入奈米尺寸帶來製程漂移、參數劇烈變動,導致良率更難以評估。在SPICE電路模擬分析時,往往將元件參數彼此間的變動視為獨立的;然而電路在晶圓廠製造過程中,元件彼此間的參數變動是有關聯性的。所以,加入相關性概念的電路模擬更能客觀與準確預測電路特性。因為在實際佈局上,常運用多線段電晶體的擺放來降低不匹配效應。故本論文導入相關性變動探討多線段電晶體對雙級放大器的影響。並觀察Common-Centroid佈局抑制參數變動的效果。最後提出一種方法來排除大量元件模擬上的限制。
While the critical dimension of transistors gets in advancement to nano-meter, it will bring the drift for larger parameter variability in manufacturing process, and is more difficult to evaluate the yield. In SPICE simulation, it treats the parameter for each same-type device as identical. Therefore we could not know the mismatch between devices. However, the parameter variation of each device should have certain correlation during manufacturing process. Taking the correlation into the simulation, it would be more objective and accurate for predicting the circuit performance.
Segments of devices are widely used in physical implementation for reducing the mismatch. A two-stage OPA is used to analyze the effect of device correlation and it is observed that how the mismatch is suppressed in Common-Centroid layout.
[1] S. Nassif, “Modeling and analysis of manufacturing variations,” IEEE Conference on Custom Integrated Circuits, pp. 223-228, 2001.
[2] T. Serrano-Gotarredona and B. Linares-Barrabco, “Systematic CMOS Transistor Mismatch Characterization,” in Proc. ISCAS, vol. 4, pp. 113-116, May 1996.
[3] T. Serrano-Gotarredona and B. Linares-Barrabco, “Cheap and Easy Systematic CMOS Transistor Mismatch Characterization,” in Proc. ISCAS, vol. 2, pp. 466-469, May 1998.
[4] T. Serrano-Gotarredona, and Bernabe Linares-Barrabco, “A Methodology for MOS Transistor Mismatch Parameter Extraction and Mismatch Simulation,” in Proc. ISCAS, Vol. 4, pp. 109-112, 28-31, May 2000.
[5] Y. J. Dai, “Correlation Analysis for CMOS Transistor Mismatch and Circuit Performance Estimation,” Dept. Electrical Engineering, Chung-Hua University, June 2003.
[6] F. L. Yang, et al, “Electrical Characteristic Fluctuation in Sub-45nm CMOS Devices,” CICC Design insensitive to variations, 2006.
[7] J. Xiong, V. Zolotov, and L. He, “Robust Extraction of Spatial Correlation,” IEEE Transaction on Computer-Aided Design of Intergrated Circuits and System, Vol. 26, No. 4 2007
[8] M. J. M. Pelgrom, and A. P. G. Welbers, “Matching Properties of MOS Transistors” IEEE Journal of Solid-State Circuits, Vol. 24, No. 5, October 1989.
[9] C. S. G. Conroy, W. A. Lane, and M. A. Moran, “Statistical Design Techniques for D/A Converters,” IEEE Journal of Solid-State Circuits, Vol. 24, Iss. 4, Aug 1989, pp. 1118-1128.
[10] W. Maly, “Computer-Aided Design for VLSI Circuit Manufacturability” Proceedings of the IEEE , vol. 78, No. 2, February 1990.
[11] S. S. Wang, “EMN_RVG: An Enhanced Multivariate Normal Random Vector Generator for Circuit Analysis,” Dept. Electrical Engineering, Chung-Hua University, June 2001.
[12] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Publishers,, 2001.
[13] Alan Hastings, The Art of Analog Layout, Prentice Hill Publishers, 2001.