| 研究生: |
蘇虹娜 Kalpana Settu |
|---|---|
| 論文名稱: |
利用指叉金電極阻抗感測器監測大腸桿菌之生長 Monitoring Escherichia coli Growth using Interdigitated Gold Microelectrode-Based Impedance Sensors |
| 指導教授: |
蔡章仁
Jang-Zern Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 179 |
| 中文關鍵詞: | 指叉微電極 、阻抗譜 、大腸桿菌 |
| 外文關鍵詞: | Escherichia coli, Impedance spectroscopy, Interdigitated microelectrode |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要:
本研究以照相平版印刷術在玻璃基板製造有效面積為0.4平方毫米的指叉形金微電極感測器以利用阻抗分析法監測大腸桿菌在數種不同介質中的生長;這些介質包括去離子水、細菌生長介質、動物細胞培養基、牛的生乳、和人尿。阻抗測量是在細菌的生長過程進行,使用的儀器是IM6ex阻抗分析儀,測量的頻率範圍是1Hz至1MHz。從測量結果和等效電路分析得知大腸桿菌的生長引起電雙層電容的變化;因此,細菌生長所引起的阻抗變化宜使用低頻率(<10千赫)來監測。在去離子水裡,大腸桿菌生長時從其細胞釋放的離子造成測量到的阻抗變小。在細菌生長介質裡和在生牛乳裡,測得的阻抗下降是由於由大腸桿菌代謝造成介質中離子濃度的變化。在動物細胞培養基裡由於培養液pH值在大氣環境中迅速增加,使得大腸桿菌的生長受到抑制,因此沒有觀察到阻抗變化。在人尿中,細菌生長過程中的阻抗變化是由於感測器表面上的細菌生物膜的形成和積累。實驗的結果證實這指叉形金微電極感測器可應用於利用阻抗測量的方式在細菌生長介質、動物細胞培養基、牛的生乳、和人尿裡監測大腸桿菌的生長。
ABSTRACT:
Interdigitated gold microelectrode (IDME) sensor was designed with an active area of 0.4 mm2 and fabricated photolithographically on glass substrate for monitoring E-coli growth by impedance analysis. This in-house fabricated IDME sensor was used as impedance sensor for monitoring Escherichia coli (E.coli) growth in different medium such as DI-water, bacterial growth medium (LB Miller’s broth), animal cell culture medium (DMEM), raw cow’s milk and in human urine. Impedance measurement was carried out during bacterial growth in different mediums over a frequency range of 1 Hz to 1 MHz using IM6ex impedance analyzer. Based on equivalent circuit analysis, it was observed that double layer capacitance was responsible for the impedance change caused by the E.coli growth and hence low frequencies (<10 kHz) were suitable for the IDME impedance sensor to monitor the change in impedance during the bacterial growth. In DI-water, decrease in impedance was observed during the E-coli growth time due to the ion release from bacterial cells. In LB-broth and raw cow milk, during E-coli growth decrease in impedance was observed due to the ionic concentration change in the medium caused by E-coli metabolism. In DMEM, E-coli growth was inhibited due to the rapid increase in pH of DMEM at ambient atmosphere and hence impedance change was not observed. In urine, change in impedance during bacterial growth was due to the formation and accumulation of bacterial biofilm on the sensor surface. IDME sensor was successfully applied to monitor the growth of E-coli in LB Miller’s broth, DMEM, raw cow’s milk and in human urine using impedance measurements.
References
1. Clark, J.L.C., Lyons, C., (1962). Electrode system for continuous monitoring in cardiovascular surgery. Annuals of the New York Academy of Sciences 102, 29-45.
2. Zhang, S., Ding, J., Liu, Y., Kong, J., Hofstetter, O., (2006). Development of a highly enantioselective capacitive immunosensor for the detection of amino acids. Analytical Chemistry 78 (21), 7592-7596.
3. Castillo, J., Gáspár, S., Leth, S., Niculescu, M., Mortari, A., Bontidean, I., Soukharev, V., Dorneanu, S.A., Ryabov, D.A., Csöregi, E., (2004). Biosensors for life quality. Design, development and applications. Sensors and Actuators B 102 (2), 179-194.
4. Cho, Y.K., and Bailey, J.E., (1978). Immobilization of enzymes on activated carbon: Properties of immobilized glucoamylase, glucose oxidase, and gluconolactonase, Biotehnology and Bioengineering 20, 1651-1665.
5. Eggins, B.R., (1996). Biosensors: an introduction. Wiley & Teubner, Chichester, UK, 212.
6. Göspel, W., Heiduschka, P., (1994). Introduction to bioelectronics: interfacing biology with electronics. Biosensors and Bioelectronics 9 (9-10), 601-776.
7. Hong, J., Yoon, D.S., Park, M.-I., Choi, J., Kim, T.S., Im, G., Kim, S., Pak, Y.E., No, K., (2004). A dielectric biosensor using the capacitance change with AC frequency integrated on glass substrates. Japanese Journal of Applied Physics 43 (8A), 5639-5645.
8. Lazcka, O., Del Campo, F. J., Munoz, F. X., (2007). Pathogen detection: a perspective of traditional methods and biosensors. Biosensors and Bioelectronics 22, 1205-1217.
9. Eggins, B.R., (2002). Chemical Sensors and Bisensors. John Wiley & Sons Ltd.
10. Barsoukov, E., Macdonald, J.R., (2005). Impedane Spectroscopy Theory, Experiment and Applications. John Wiley & Sons Ltd., Hoboken, New Jersey.
11. Bard, A. J., Faulkner, L. R., (2001). Electrochemical methods, fundamentals and applications. Wiley, New York.
12. Langmuir, I., (1929). "The interaction of electron and positive ion space charges in cathode sheaths". Physical Review. 33, 954-989.
13. Amatore, C., Saveant, J.M., Tessier, D., (1983). Kinetics of electron transfer to organic molecules at solid electrodes in organic media, J. Electroanal. Chem. Interface Electrochem. 146 (1), 37-45.
14. Ciszkowska, M., Stojek, Z., (1999). Voltammetry in solutions of low ionic strength. Electrochemical and analytical aspects J. Electroanal. Chem. 466, 129-143.
15. Mauyama, K., Ohkawa, H., Ogawa, S., Ueda, A., Niwa, O., Suzuki, K., (2006). Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy. Anal. Chem. 78, 1904-1912.
16. Madou, Marc J. (2002). Fundamentals of Microfabrication: the Science of Miniaturization. 2nd ed. CRC Press LLC.
17. Giaever, I., Keese, C.R., (1984). Monitoring fibroblast behaviour in tissue culture with an applied electric field. Proc. Natl. Acad. Sci. 81, 3761-3764.
18. Giaever, I., Keese, C.R., (1991). Micromotion of mammalian cells measured electrically. Proc. Natl. Acad. Sci. 88, 7896-7900.
19. Wegner, J., Keese, C.R., Giaever, I., (2000). Electric cell substrate impedance sensing (ECIS) as a non-invasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp. Cell Res. 259, 158-166.
20. Keese, C.R., J. Wegener, S.R. Walker, I. Giaever, (2004). Electrical wound-healing assay for cells in vitro. Proc. Natl. Acad. Sci. 101, 1554-1559.
21. Arndt, S., J. Seebach, K. Psathaki, H.J. Galla, J.Wegener, (2004) .Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens. Bioelectron.19, 583-594.
22. Xiao, C., Luong, J.H.T., (2005). Assessment of cytotoxicity by emerging impedance spectroscopy. Toxicol. Appl. Pharmacol. 206, 102-112.
23. Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K., Wolf, B., (1997). Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosensors & Bioelectronics 12, 29-41.
24. Chang, B.W., Chen, C.H., Ding, S.J., Chen, D.C.H., Chang, H.C., (2005). Impedimetric monitoring of cell attachment on interdigitated microelectrodes. Sensors and Actuators B 105, 159-163.
25. Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K., Wolf, B., (1998). On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures. Meb. Biol. Eng. Comput. 36, 365-370.
26. Wang, L., Wang, L., Yin, H., Xing, W., Yue, Z., Guo, M., Cheng, J., 2010. Real-time, label-free monitoring of the cell cycle with a cellular impedance sensing chip. Biosensors and Bioelectronics 25, 990-995.
27. Ceriotti, L., Ponti, J., Broggi, F., Kob, A., Drechsler, S., Thedinga, E., Colpo, P., Sabbioni, E., Ehret, R., Rossi, R., (2007). Real-time assessment of cytotoxicity by impedance measurement on a 96-well plate. Sensors and Actuators B 123, 769-778.
28. Ceriotti, L., Ponti, J., Colpo, P., Sabbioni, E., Rossi, F., (2007). Assessment of cytotoxicity by impedance spectroscopy. Biosensors and Bioelectronics 22, 3057-3063.
29. Mao, X., Yang, L., Xu, X.L., Li, Y., (2006). A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosensors and Bioelectronics. 21, 1178-1185.
30. Yeh, C.H., Chang, Y.H., Chang, T.C., Lin, H.P., Lin, H.C., (2010). Electro-microchip DNA-biosensor for bacteria detection. Analyst 135, 2717-2722.
31. Nandakumar, V., Jeffrey T. La Belle, Justin Reed, Miti Shah, Douglas Cochrana, Lokesh Joshi , T.L. Alford., (2008). A methodology for rapid detection of Salmonella typhimurium using label-free electrochemical impedance spectroscopy. Biosensors and Bioelectronics 24, 1039-1042.
32. Yang, L., Ruan, C., Li,Y., (2003). Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosensors and Bioelectronics 19, 495-502.
33. Ruan, C., Yang, L., Li, Y., (2002). Immunobiosensor Chips for Detection of Escherichia coli O157:H7 Using Electrochemical Impedance Spectroscopy. Analytical Chemistry 74, 4814-4820.
34. Yang, L., (2008). Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. Talanta 74, 1621-1629.
35. Varshney, M., Li, Y., (2008). Double interdigitated array microelectrode-based impedance biosensor for detection of viable Escherichia coli O157:H7 in growth medium. Talanta 74, 518-525.
36. Yang, L., Li, Y., Griffis, C.L., Johnson, M.G., (2004). Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosensors and Bioelectronics 19, 1139-1147.
37. Laczka, O., Baldrich, E., Munoz, F.X., Campo, F.J., (2008). Detection of Escherichia coli and Salmonella typhimurium Using Interdigitated Microelectrode Capacitive Immunosensors: The Importance of Transducer Geometry. Anal. Chem. 80, 7239-7247.
38. Radke, S.M., Alocilja, E.C., (2005). A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosensors and Bioelectronics. 20, 1662-1667.
39. Radke, S.M., Alocilja, E.C., (2004). Design and Fabrication of a Microimpedance Biosensor for Bacterial Detection. IEEE Sens. J. 4 (4), 434–440.
40. Radke, S.M., Alocilja, E.C., (2005). A Microfabricated Biosensor for Detecting Foodborne Bioterrorism Agents. IEEE Sens. J. 5 (4), 744-750.
41. Pohl, H.A., (1979). Dielectrophoresis, Cambridge University Press, Cambridge.
42. Zou, Z., Lee, S., Ahn, C.H., (2008). A Polymer Microfluidic Chip with Interdigitated Electrodes Arrays for Simultaneous Dielectrophoretic Manipulation and Impedimetric Detection of Microparticles. IEEE Sensors Journal 8, 527-535.
43. Yang, L., Banada, P., Bhunia, A., Bashir, R., (2008). Effects of Dielectrophoresis on Growth, Viability and Immuno-reactivity of Listeria monocytogenes. Journal of Biological Engineering 2:6 doi: 10.1186/1754-1611-2-6.
44. Varshney, M., Li, Y., (2007). Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosensors and Bioelectronics 22, 2408-2414.
45. Varshney, M., Li, Y., Srinivasan, B., Tung, S., (2007). A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sensors and Actuators B 128, 99-107.
46. A Lu, Y.-C.; Chuang, Y.-S.; Chen, Y.-Y.; Shu, A.-C.; Hsu, H.-Y.; Chang, H.-Y.; Yew, T.-R. (2008). Bacterial detection utilizing electrical conductivity. Biosens. Bioelectron. 23, 1856-1861.
47. Yang, L.; Li, Y.; Erf, G.F. (2004). Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7. Anal. Chem. 76, 1107-1113.
48. Thakur S. (2007). Escherichia coli. College Park (MD): University of Maryland Department of Nutrition and Food Science. 12 p.
49. Montville TJ, Matthews KR. (2005). Food Microbiology: an Introduction. Washington (DC): ASM Press. 380 p.
50. Mead, P.S., Griffin, P.M., (1998). Escherichia coli O157:H7. Lancet 352, 1207-1212.
51. Kenneth Todar, Online Textbook of Bacteriology, http://textbookofbacteriology.net/
52. O’Toole G, Kaplan, H.B., Kolter, R., (2000). Review. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49-79.
53. Stoodley P, Sauer, K., Davies, D.G., Costerton, J.W., (2002). Review. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187-209.
54. Flemming H-C. (2002). Mini-review. Biofouling in water systems – cases, causes and countermeasures. Appl. Microbiol. Biotechnol. 59, 629-640.
55. Neu, T.R., Swerhone, G.D.W., Lawrence, J.R., (2001). Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147, 299-313.
56. Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., Greenberg, E.P., (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295-298.
57. Ahmer, B.M., (2004). Cell-to-cell signalling in Escherichia coli and Salmonella enteric. Mol. Microbiol. 52, 933-945.
58. Henikoff, S., Wallace, J.C., Brown, J.P., (1990). Finding protein similarities with nucleotide sequence databases, Methods Enzymol. 183, 111-132.
59. Rob Van Houdt, Chris W. Michiels., (2005). Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in Microbiology 156, 626-633.
60. Mamishev, A. V., Du, Y., Lesieutre, B. C., Zahn, M., (1999). Developments and applications of fringing electric field dielectrometry sensors and parameter estimation algorithms. J. Electrost. 46, 109-123.
61. Starzyk, F., (2008). Parametrisation of interdigit comb capacitor for dielectric impedance spectroscopy. Archives of Materials Science and Engineering. 34-1, 31-34.
62. Van Gerwen, P., Laureyn, W., Laureys, W., Huyberechts, G., Beeck, M.O.D., Baert, K., Suls, J., Sansen, W., Jacobs, P., Hermans, L., Mertens, R., (1998). Nanoscaled interdigitated electrodes array for biochemical sensors. Sens. Actuators B 49, 73-80.
63. Zou, Z., Kai, J., Rust, M.J., Han, J., Ahn., C.H., (2007). Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sens. Actuators A 136, 518-526.
64. Kanwar Vikas Singh., Allison M. Whited ., Yaswanth Ragineni., Thomas W. Barrett., Jeff King., Raj Solanki., (2010). 3D nanogap interdigitated electrode array biosensors. Anal Bioanal. Chem. 397, 1493-1502.
65. Xu, G., Chan, M. B., Yang, C., Sukumar, P., Choolani, M., Ying, J.Y., (2006). Design and Fabrication a Microfluidic Device for Fetal Cells Dielectrophoretic Properties Characterization. Journal of Physics: Conference Series 34, 1106-1111.
66. Webster M. S., et al. (2009). Computer Aided Modelling of an Interdigitated Microelectrode Array Impedance Biosensor. IEEE Transactions on Dielectrics and Electrical Insulation 16 (5), 1356-1363.
67. Tang, X., Flandre, D., Raskin, J.-P., Nizet, Y., Hagelsieb, L.M., Pampin, R., Francis, L.A., (2011). A new interdigitated array microelectrode-oxide-silicon sensor with label-free, high sensitivity and specificity for fast bacteria detection. Sensors and Actuators B 156 (2), 578-587.
68. Min, J., Baeumner, A.J., (2004). Characterization and Optimization of Interdigitated Ultramicroelectrode Arrays as Electrochemical Biosensor Transducers. Electroanalysis, 16 (9), 724-729.
69. Leuvering, J.H., Thal, P.J., Van der Waart, M., Schuurs, A.H., (1980). Sol particle Immunoassay (SPIA). J. Immnoassay Immunochem. 1, 77-91.
70. W. Olthuis et al. (1997). Planar interdigitated electrolyte-conductivity sensors on an insulating substrate covered with Ta205. Sensors and Actuators B, 43, 211-126.
71. Sezonov, G., -Petit, D.J., D’Ari, R., (2007). Escherichia coli Physiology in Luria-Bertani Broth. Journal of Bacteriology 189 (23), 8746-8749.
72. Laureyn, W., Nelis, D., Van Gerwen, P., Baert, K., Hermans, L., Magnee, R., Pireaux, J.J., Maes, G., (2000). Nanoscaled interdigitated titanium electrodes for impedimetric biosensing. Sens. Actuat. B 68 (1–3), 360-370.
73. Gawad, S., Xheung, K., Seger, U., Bertsch, A., Renaud, P., (2004). Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip 4, 241-251.
74. Carstensen, E.L., Marquis, R.E., (1968). Passive Electrical Properties of Microorganisms: III, Conductivity of isolated bacterial cell walls. Biophys. J. 8, 536-548.
75. Van Der Wal, A., Minor, M., Norde, W., Zehnder, A., Lyklema, J., (1997). Conductivity and dielectric dispersion of gram- positive bacterial cells. J. Colloid Interface Sci. 186. 71-79.
76. Wilson, W.W., Wade, M.M., Holman, S.C., Champlin, F.R., (2001). Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods 43, 153-164.
77. Yang, L., Li, Y., (2006). Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation. Journal of Microbiological Methods 64, 9-16.
78. Owicki., J., Parcem J., (1992). Biosensors based on the energy metabolism of living cells: the physical chemistry and cell biology of extracellular acidification. Biosensors and Bioelectronics 7, 257-272.
79. Pless, P., Futschik, K., Schope, K., (1994). Rapid detection of Salmonellae by means of a new impedance-splitting method. J. Food Prot. 57, 369-376.
80. Flint, S.H., Brooks, J.D., (2001). Rapid detection of Bacillus stearothermophilus using impedance-splittting. Journal of Microbiological Methods 44, 205-308.
81. Wawerla, M., Stolle, A., Schalch, B., Eisgruber, H., (1999). Impedance microbiology: applications in food hygiene. J. Food Prot. 62, 1488-1496.
82. Son, Y.-J., Phue, J.-N., Trinh, L.B., Lee, S.J., Shiloach, J., (2011). The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth., Microbial Cell Factories. 10:52 doi:10.1186/1475-2859-10-52.
83. http://tools.invitrogen.com/content/sfs/productnotes/F_DMEM%20-RD-MKT-TL-HL050602.pdf
84. Felice, C.J., Madrid, R.E., Olivera, J.M., Rotger, V.I., Valentinuzzi, M.E., (1999). Impedance microbiology: quantification of bacterial content in milk by means of capacitance growth curves. J. Microbiol. Meth. 35, 37-42.
85. Uhlich, G.A., Cooke, P.H., Solomon, E.B., (2006). Analysis of the red-dry-rough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl. Environ. Microbiol. 72, 2564-2572.
86. Silagyi, K., Kim, S.-H., Lo, Y.M., Wei, C.-I., (2009). Production of biofilm and quorum sensing by Escherichia coli O157:H7 and its transfer from contact surfaces to meat, poultry, ready-to-eat deli and produce products. Food Microbiology 26, 514-519.