跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張素珊
Su-Shan Chang
論文名稱: 利用導電原子力顯微技術(CAFM)探討聚苯胺導電區域變化情形
--
指導教授: 吳春桂
Chun-Guey Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 93
語文別: 中文
論文頁數: 133
中文關鍵詞: 聚苯胺導電原子力顯微鏡
外文關鍵詞: Polyaniline, Conductive Atomic Force Microscope
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    ??蝶丳敦w顯微技術是觀測奈米等級材料的重要技術,其中原子力顯微鏡及其衍生技術應用最廣,其量測方式為以探針在極接近樣品表面時,進行樣品表面掃瞄及局部物性量測。藉由導電原子力顯微鏡量測不同型態的聚苯胺膜在探針接觸且同時施加電壓下的表面型態、導電區域及導電特性。EB態與ES態之聚苯胺膜表面型態類似,但從HCl(aq)、HClO4(aq)中製備而得之聚苯胺膜為圓盤狀堆疊,而由H2SO4(aq)中製得為鏈狀堆積,但表面型態不受膜厚度及摻雜酸種類影響。由CAFM的數據得知所有聚苯胺膜的導電度都不均勻,整塊膜可視為導電(絕緣)島嶼散佈在絕緣(導電)海中且隨聚苯胺膜的摻雜度、厚度、與摻雜子的不同而變化:隨摻雜程度增加,其導電區域從孤立小島演變成密集分佈連結的島嶼,而I-V曲線也顯示其由半導體性質演變成具有金屬導電性質;隨厚度增加,導電區域數目增加,最後連結成大板塊,且I-V曲線也由半導體變成具類金屬的導電特性;在HClO4(aq)中製得之聚苯胺膜(<120 nm),分子鏈的共軛程度最短,因此用HCl、H2SO4、與HClO4摻雜後的導電度類似且皆為半導體,由H2SO4(aq)、與HCl(aq)聚合而得之聚苯胺薄膜分子鏈的共軛程度類似,且皆以HClO4摻雜後的導電度最高,並呈現金屬導體特性。


    Abstract
    Scanning probe microscopies (SPMs) are important technologies providing the variety properties of material surfaces with nanometer-scale spatial resolution. Atomic Force Microscopy (AFM) was one of the most widely used techniques of the SPM. The surface morphology and the physical properties of the materials can be measured simultaneously by recording the various interactions as well as the atomic force between the sample and the tip. By applying a voltage between sample and a conductive AFM tip, a so-called Conducting Atomic Force Microscopy (C-AFM), topographic and current images were obtained simultaneously. Furthermore, a current-voltage trace can be recorded on a selected spot of the image, where one can study the electrical characteristics of the surface. The topographical images of emeraldine base (EB) are similar to emeraldine salt (ES). The globular-shaped structure was observed in polyaniline (PANI) films prepared from HCl and HClO4 aqueous solutions, whereas the entangled fiber-shaped structure is detected when PANI films were prepared in H2SO4(aq). The topographical images also depend on the doping level, film thickness and dopant. The conductivity images, which provide information on the distribution of conducting (insulating) islands surrounded by insulating (conducting) areas, demonstrate that electron conduction across the PANI film is heterogeneous and the conducting homogeneity also depends on doping level, thickness, and dopant. As the doping level of PANI film increased, the size of conducting islands also increased and the I-V curves showed semiconducting and metallic conducting characteristics. As the thickness of PANI film increased, the number and area of conducting domains increased, and the I-V curves showed semiconducting and semi-metal conducting behavior. PANI films prepared from HClO4(aq) (thickness <120 nm) have the smallest degree of conjugation and their I-V curves show semiconducting characteristic no matter they were doped with HCl, H2SO4, or HClO4. The degree of conjugation in PANI films prepared from H2SO4(aq) is the same as those prepared from HCl(aq). These PANI films have the highest conductivity when doping with HClO4(aq), and the I-V curves of all surface show metallic conducting behavior.

    目錄 中文摘要…………………………………………………………………I 英文摘要………………………………………………………………II 目錄……………………………………………………………………III 圖目錄…………………………………………………………………VII 表目錄…………………………………………………………………XIV 第一章 前言……………………………………………………………1 第二章 原子力顯微技術………………………………………………2 2-1 原子力顯微鏡…………………………………………………2 2-1-1 儀器裝置………………………………………………… 3 2-1-2 基本原理……………………………………………………7 2-1-3 掃瞄方式……………………………………………………9 2-2 導電原子力顯微鏡介紹………………………………………10 2-2-1 儀器架構與工作原理……………………………………10 第三章 共軛導電高分子的介紹………………………………………13 3-1 共軛導電高分子的發展歷史…………………………………13 3-2 共軛高分子摻雜導電理論……………………………………15 3-3 共軛導電高分子的應用………………………………………16 第四章 有機共軛高分子-聚苯胺……………………………………18 4-1 聚苯胺之歷史發展……………………………………………18 4-2 聚苯胺之導電機構……………………………………………18 第五章 研究動機………………………………………………………21 第六章 實驗部分………………………………………………………22 6-1 藥品……………………………………………………………22 6-2 簡稱……………………………………………………………23 6-3 實驗流程………………………………………………………24 6-3-1 ITO玻璃清洗方式…………………………………………24 6-3-2 沈積聚苯胺膜於ITO玻璃表面…………………………24 6-3-3 聚苯胺膜摻雜方法………………………………………24 6-4 儀器分析與樣品製備…………………………………………25 6-4-1紫外光/可見光及近紅外光吸收光譜儀…………………25 6-4-2 原子力顯微鏡……………………………………………26 6-4-3 膜厚測量儀………………………………………………27 第七章 結果與討論……………………………………………………28 7-1 不同摻雜程度聚苯胺膜的探討………………………………28 7-1-1 利用 UV-Vis 吸收光譜來定聚苯胺膜的摻雜程度……28 7-1-2 利用 CAFM 探討聚苯胺膜表面型態和電流高低圖……29 7-1-3 利用電流電壓(I-V)圖探討聚苯胺的導電特性………36 7-2 不同酸環境下聚合聚苯胺的表面型態與導電特性探討……40 7-2-1 鹽酸環境下聚合所得聚苯胺膜,隨厚度不同其表面形貌和導電區域分佈及導電特性的變化………………………40 7-2-1-1 聚苯胺膜的厚度與摻雜程度控制……………………40 7-2-1-2 利用 CAFM 探討聚苯胺膜表面型態和電流高低圖…41 7-2-1-3 利用電流電壓(I-V)曲線探討聚苯胺的導電特性..47 7-2-2 硫酸環境下聚合所得聚苯胺膜,隨厚度不同其表面形貌和導電區域分佈及導電特性的變化………………………54 7-2-2-1聚苯胺膜的厚度與摻雜程度控制……………………54 7-2-2-2 利用 CAFM 探討聚苯胺膜表面型態和電流高低圖…56 7-2-2-3利用電流電壓(I-V)曲線探討聚苯胺的導電特性..62 7-2-3 過氯酸環境下聚合所得聚苯胺膜,隨厚度不同其表面形貌和導電區域分佈及導電特性的變化……………………69 7-2-3-1聚苯胺膜的厚度與摻雜程度控制……………………69 7-2-3-2利用 CAFM 探討聚苯胺膜表面型態和電流高低圖…70 7-2-3-3利用電流電壓(I-V)曲線探討聚苯胺的導電特性..76 7-2-4 不同酸環境下聚合聚苯胺膜的比較……………………83 7-3不同酸摻雜聚苯胺膜的探討…………………………………86 7-3-1 摻雜酸種類對在鹽酸環境下聚合所得聚苯胺膜的表面形貌和導電特性的影響……………………………………86 7-3-1-1不同摻雜酸摻雜之聚苯胺膜的UV-Vis 光譜………86 7-3-1-2利用CAFM 探討聚苯胺膜表面型態和電流高低圖…88 7-3-1-3利用電流電壓(I-V)圖探討聚苯胺的導電特性…91 7-3-2摻雜酸種類對在硫酸環境下聚合所得聚苯胺膜的表面形貌和導電特性的影響………………………………………96 7-3-2-1不同摻雜酸摻雜之聚苯胺膜的UV-Vis 光譜………96 7-3-2-2利用CAFM 探討聚苯胺膜表面型態和電流高低圖..97 7-3-2-3利用電流電壓(I-V)曲線探討聚苯胺的導電特性..99 7-3-3摻雜酸種類對在過氯酸環境下聚合所得聚苯胺膜的表面形貌和導電特性的影響……………………………………104 7-3-3-1不同摻雜酸摻雜之聚苯胺膜的UV-Vis 光譜………104 7-3-3-2利用 CAFM 探討聚苯胺膜表面型態和電流高低圖105 7-3-3-3利用電流電壓(I-V)圖探討聚苯胺的導電特性…107 7-3-4不同摻雜酸種類對聚苯胺膜影響的總比較……………112 第八章 結論…………………………………………………………113 參考資料………………………………………………………………114

    參考資料
    1. Moore, E. G. Electronics, 1985, 38, 6
    2. http:///www.tsmc.com.tw/c-html/circuits/index.html
    3. http://www.zyvex.com/nanotech/feynman.html
    4. http://www.nanoword.net/library/nwn/1.html
    5. Binning, G.; Rohrer, H.; Gerber, C.; Weibel. E. Phys. Rev. Lett., 1983, 49, 57
    6. Binning, G.; Quate, C. F.; Gerber Ch. Phys. Rev. Lett., 1986, 56,930
    7. Magonov, S. N,; Hangbo M. H.”Surface Analysis with STM and AFM”, VCH,1995
    8. Cohen, S. H.; Bra, M. T.; Lightbody M. L. “Atomic Force Microscopy/Scanning Tunneling Microscopy”,Plenum,1994
    9. 行政院國家科學委員會,精密儀器發展中心, “探針掃瞄式顯微術 ”,1995
    10. http://www.angsnanotek.com.tw/
    11. Shirakawa, H.; Ikeda, S. Polymer, 1971, 2, 231
    12. Shirakawa, H.; Lousi, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc.,Chem. Commum., 1977, 578
    13. Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Lousi, E. J.; Gau, S. C.; MacDiamid A. G. Phys. Rev. Lett., 1977, 39,1098
    14. Epstin, A. J.; MacDiarmid, A. G.” polyaniline:Solution, Film, and Oxidation State, Proc. Faraday Society, Faraday Trans.”,1989
    15. Diaz, A. F.; Bargon, J. “in Handbook of Conducting Polymers,T. A. Skotherim Ed.
    16. Wessling, B. Synthetic Metals, 1991, 1, 119
    17. Kittel, C.” Introduction to Solid State Physics, 6th Ed. John Wiley&Sons,Singapore”,1986
    18. 柯賢達,”Studies on the Synthesis of Poly(thiophene-3-acetaic acid) and Their Blends”,台大化工所碩士論文
    19. Smith, Y. C. P.; Heeger, A. J. Synthetic Metals., 1993, 55, 3514
    20. Nigrey, P. J.; Macinnes, D. F. J. Electrochem. Soc., 1981, 128, 1651
    21. Allen, W. N.; Parnt, P.; Carosella, C. A. Synthetic Metals., 1978, 1, 151
    22. Tlarke, T. C.; Krounbi, M. T.; Lee, V. Y. J. Chem. Soc., 1981, 384
    23. Lux, F. Polymer Review, 1994, 35, 2915
    24. 陳壽安,”從導電高分子之發展談:啟發、創意與突破”
    25. Lertherby, H. J. Chem. Soc., 1862, 15, 16
    26. Chiang, J. C.; MacDiarmid, A.G. Synth. Met., 1986, 13, 193
    27. MacDiarmid, A. G. Synth. Met., 1994, 26, 231
    28. Mohilner, D. M.; Adams, R. N. J. Am. Chem.. Soc., 1962, 84, 3618
    29. MacDiarmid, A. G.; Chiang, J. H. Mol. Cryst. Liq. Cryst., 1985, 121, 173
    30. Genies, E. M.; Syed, A. A.; Tsintaris, C. Mol. Cryst. Liq. Cryst., 1985, 121, 181
    31. Trierd, D. C.; Nalwa, H. S.; Wilet, J.&Sons Ltd.,” Handbook of Organic Conductive Molecules and Polymers”,1997, 2, 548
    32. Epstein, A. J.; Ginder, J. M.; Bigelow, R. W. Synth. Met., 1987, 18, 303
    33. MacDiarmid, A. G.; Epstein, A. J. Synth. Met., 1997, 29, E409
    34. Wan, M. J. Polym. Sci. Part A: Polym. Chem., 1992, 30, 543
    35. Lux, F.; Hinrichsen, G. Synth. Met., 1993, 55, 347
    36. Ouyang, M.; Huang, J. L,; Lieber, C. M. Annu. Rev. Phys. Chem., 2002, 53, 201
    37. Motheo, A. J.; Santos, J. R.; Venancio, E. C.; Mattoso, L. H. C. Polymer, 1998, 39, 6977
    38. Choi, S. J.; Park, S. M. J. Electrochem. Soc. , 2002, 149, E26
    39. Borara, G.; Sparpaglione, M. Synth. Met. , 1995, 72, 135
    40. Singh, R.; Arora, V.; Tandon, R. P.; Chandra, S.; Kumar, N.; Mansingh, A. Polymer, 1997, 38, 4897
    41. Boxley, C. J.; Wite, H. S.; Gardner, C. E.; Macpherson, J. V. J. Phys. Chem. B, 2003, 107, 9677
    42. Choi, S. J.; Park, S. M. J. Electrochem. Soc. , 2002, 149, E26
    43. Cordova, R.; Vall, M. A. D.; Arratia, A.; Gomez, H.; Sxhrebler, R. J. Electroanal. Chem., 1994, 377, 75
    44. MacDiarmid, A. G.; Epsteint, A. J. Synth. Met. , 1995, 69, 85
    45. Li, W.; Wan, M. Synth. Met. , 1998, 92, 121

    QR CODE
    :::