| 研究生: |
陳鴻文 Hong-Wen Chen |
|---|---|
| 論文名稱: |
快速合成具耐溶劑核心之核殼結構次微米球 及其應用於增加光子晶體成膜性質之研究 Rapid synthesis of core-shell submicrospheres with solvent-resistance core and soft shell and its application for Robust Opal Film |
| 指導教授: |
陳暉
Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 無乳化劑乳化聚合 、均ㄧ粒徑次微米球 、光子晶體 、玻璃轉移溫度 、高分子球折射率 |
| 外文關鍵詞: | Soap-free emulsion polymerization, Monodisperse submicrospheres, Photonic crystals, Glass transition temperature, Refractive index |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究乃利用二階段單體添加的製備方式,以無乳化劑乳化聚合法於沸騰狀態下,製備具有交聯結構的耐溶劑核心與軟殼層之核殼結構次微米球。將不同比例的MMA與DVB反應一段時間後,添加二階段單體BA製備出核殼結構次微米球,並於室溫下或壓縮程序進行自組裝,建構三維結構之光子晶體。在實驗探討方面,主要針對第一階段轉化率、核心耐溶劑性、二階段單體添加量對成膜性的影響、核心與殼層折射率差對光子晶體膜光學性質的影響以及不同表面官能基改質的影響做討論。
結果顯示,當核心交聯程度達20%即具有耐溶劑性,並於轉化率為85%時製備P(MMA-co-DVB)/PBA核殼結構次微米球,隨著二階段單體BA添加量由3克添加至10克時,其粒徑由263 nm上升至341 nm,殼層玻璃轉移溫度由-21℃下降至-40℃,核心則因為交聯20%使得Tg變化不明顯。由外觀判斷,二階段單體BA添加量達10克時,自組裝後的光子晶體膜即具有成膜性,但其光學性質仍然微弱,其原因為核心與殼層折射率差異過於相近所造成。
另一部份則藉由St的添加,改變核心的折射率,並於核心轉化率85%時製備P(St-co-MMA-co-DVB)/PBA核殼結構次微米球,並將室溫自組裝後的光子晶膜經由一壓縮程序,使原本微弱的結構性色彩變得更鮮明。隨著核心與殼層折射率差異增加,光子能隙亦從原先1~2%微弱的反射強度提升至25%左右;最後則利用不同官能基之單體進行表面改質,藉由改變球與球之間作用力或殼層折射率,改善光子晶體之光學性質。
In this study, robust opal film has been developed by core-shell submicrospheres. Monodispersed P(MMA-co-DVB) / P(BA) core-shell structure submicrospheres were prepared by two-step soap-free emulsion polymerization at boiling state. MMA and DVB were polymerized during a period of time, and then BA was introduced into the above reaction solution and polymerized. Then the latex was dropped onto substrate and self-assembly in room temperature to fabricate the photonic crystal film. The effect of the conversion of core, the solvent resistance properties of core, the amount of shell monomer, the difference of refractive index between core and shell and kinds of shell monomers on the optical and mechanical properties were discussed.
The results indicated that the monodispersed, solvent-resistant cores were prepared as the DVB content was higher than 20 wt %. The P(MMA-co-DVB) / P(BA) core/shell submicrospheres were easily prepared when the first step conversion was 85%. The diameters of P(MMA-co-DVB) / P(BA) core/shell submicrospheres were changed from 263 nm to 341 nm and the Tg of shell were decreased from -21 oC to -40 oC by adjusting the amount of shell monomer (BA) from 3g to 10g. The photonic crystal had the film-forming property when amount of shell monomer (BA) reached to 10g, but the optical property was still weak.
The optical property can be improved by compressing the photonic crystal film that was self-assembly in room temperature and increasing the difference of refractive index between core and shell by adding styrene at first step. In addition, for the UV-vis result, the reflective intensity were improved from 1~2% to 25%, the photonic crystal film became colorful. On the other hand, the optical properties of photonic crystal film can be improved by adding different monomers into shell to change the interaction between particle to particle and the difference of refractive index between core and shell.
1. B. Platzer, R.D. Klodt, B. Hamann, K.D. Henkel. The influence of local flow conditions on the particle size distribution in an agitated vessel in the case of suspension polymerisation of styrene. Chemical Engineering and Processing 2005,44:1228-1236.
2. H. Jung, K. Song, K. Lee, B.H. Lee, S. Choe. Reaction and stabilizing mechanism of the cross-type macromonomers in the dispersion polymerization of styrene. Journal of Colloid and Interface Science 2007,308:130-141.
3. J.W. Kim, K.D. Suh. Monodisperse micron-sized polystyrene particles by seeded polymerization: effect of seed crosslinking on monomer swelling and particle morphology. Polymer 2000,41:6181-6188.
4. K. Zhang, W. Wu, H. Meng, K. Guo, J.F. Chen. Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure. Powder Technology 2009,190:393-400.
5. T. Yamamoto, Y. Kanda, K. Higashitani. Molecular-scale observation of formation of nuclei in soap-free polymerization of styrene. Langmuir 2004,20:4400-4405.
6. T. Yamamoto, M. Nakayama, Y. Kanda, K. Higashitani. Growth mechanism of soap-free polymerization of styrene investigated by AFM. J Colloid Interface Sci 2006,297:112-121.
7. A. Rogozea, F. Savonea, A. Caragheorgheopol, I.C. Bujanca, M. Dimonie. Soap Free Emulsion Polymerization. A spin probe study of the colloid system in the early stages of reaction. Revue Roumaine De Chimie 2011,56:351-362.
8. T. Matsumoto, A. Ochi. Polymerization of Styrene in Aqueous Solution. Kobunshi Kagaku 1965,22:481-487.
9. D. Nagao, T. Sakamoto, H. Konno, S. Gu, M. Konno. Preparation of micrometer-sized polymer particles with control of initiator dissociation during soap-free emulsion polymerization. Langmuir 2006,22:10958-10962.
10. Z. Z. Gu, H. Chen, S. Zhang, L. Sun, Z. Xie, Y. Ge. Rapid synthesis of monodisperse polymer spheres for self-assembled photonic crystals. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2007,302:312-319.
11. X. Du, J. He. Facile size-controllable syntheses of highly monodisperse polystyrene nano- and microspheres by polyvinylpyrrolidone-mediated emulsifier-free emulsion polymerization. Journal of Applied Polymer Science 2008,108:1755-1760.
12. S.T. Camli, F. Buyukserin, M.S. Yavuz, G.G. Budak. Fine-tuning of functional poly(methylmethacrylate) nanoparticle size at the sub-100 nm scale using surfactant-free emulsion polymerization. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2010,366:141-146.
13. G. Liu, P. Liu. Synthesis of monodispersed crosslinked nanoparticles decorated with surface carboxyl groups via soapless emulsion polymerization. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2010,354:377-381.
14. E. Rusen, A. Mocanu, B. Marculescu, R. Somoghi, L. Butac, F. Miculescu, et al. Obtaining complex structures starting from monodisperse poly(styrene-co-2-hydroxyethylmethacrylate) spheres. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2011,375:35-41.
15. Y.Y. Liu, M.Y. Lo, H. Chen. Characterization of Monodisperse Copolymer Submicrospheres with Branched Structures and Different Glass-Transition Temperatures Prepared by Soap-Free Emulsion Polymerization. Journal of Applied Polymer Science 2011,120:2945-2953.
16. S. John. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters 1987,58:2486-2489.
17. E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters 1987,58:2059-2062.
18. K. Liu, T.A. Schmedake, R. Tsu. A comparative study of colloidal silica spheres: Photonic crystals versus Bragg's law. Physics Letters A 2008,372:4517-4520.
19. L.P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G.I. Mark, Z.E. Horvath, et al. Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair. Physical Review E 2003,67.
20. L.P. Biro, K. Kertesz, Z. Vertesy, G.I. Mark, Z. Balint, V. Lousse, et al. Living photonic crystals: Butterfly scales - Nanostructure and optical properties. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2007,27:941-946.
21. L.P. Biro. Photonic nanoarchitectures of biologic origin in butterflies and beetles. Materials Science and Engineering B-Advanced Functional Solid-State Materials 2010,169:3-11.
22. T.F. Krauss, R.M. DeLaRue, S. Brand. Two-dimensional photonic-bandgap structures operating at near infrared wavelengths. Nature 1996,383:699-702.
23. H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C.J.M. Smith, T.F. Krauss, et al. Optical and confinement properties of two-dimensional photonic crystals. Journal of Lightwave Technology 1999,17:2063-2077.
24. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O'Brien, P.D. Dapkus, et al. Two-dimensional photonic band-gap defect mode laser. Science 1999,284:1819-1821.
25. S. Noda, A. Chutinan, M. Imada. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 2000,407:608-610.
26. A.J. Wang, S.L. Cheng, P. Dong, X.G. Cai, Q. Zhou, G.M. Yuan, et al. Fabrication of Colloidal Photonic Crystals with Heterostructure by Spin-Coating Method. Chinese Physics Letters 2009,26.
27. Y.N. Xia, B. Gates, Y.D. Yin, Y. Lu. Monodispersed colloidal spheres: Old materials with new applications. Advanced Materials 2000,12:693-713.
28. Z.Z. Gu, Q.B. Meng, S. Hayami, A. Fujishima, O. Sato. Self-assembly of submicron particles between electrodes. Journal of Applied Physics 2001,90:2042-2044.
29. Y. Lin, P.R. Herman, W. Xu. In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction. Journal of Applied Physics 2007,102.
30. L. Cui, Y. Zhang, J. Wang, Y. Ren, Y. Song, L. Jiang. Ultra-Fast Fabrication of Colloidal Photonic Crystals by Spray Coating. Macromolecular Rapid Communications 2009,30:598-603.
31. Y.Z. Li, T. Kunitake, S. Fujikawa. Efficient fabrication of large, robust films of 3D-ordered polystyrene latex. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2006,275:209-217.
32. A. Wang, S.L. Chen, P. Dong. Rapid fabrication of a large-area 3D silica colloidal crystal thin film by a room temperature floating self-assembly method. Materials Letters 2009,63:1586-1589.
33. F. Piret, Y.U. Kwon, B.L. Su. Silica colloidal crystals with uni- and multi-photonic bandgaps and controlled reflective properties. Chemical Physics Letters 2009,472:207-211.
34. B. Tang, C. Wu, T. Lin, S. Zhang. Heat-resistant PMMA photonic crystal films with bright structural color. Dyes and Pigments 2013,99:1022-1028.
35. L. Duan, B. You, L. Wu, M. Chen. Facile fabrication of mechanochromic-responsive colloidal crystal films. Journal of Colloid and Interface Science 2011,353:163-168.
36. C. Sun, Y. Yao, Z. Gu. Fabrication of elastic colloidal crystal films from pure soft spheres. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2012,402:102-107.
37. T. Ito, C. Katsura, H. Sugimoto, E. Nakanishi, K. Inomata. Strain-Responsive Structural Colored Elastomers by Fixing Colloidal Crystal Assembly. Langmuir 2013,29:13951-13957.
38. Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, et al. Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region. Langmuir 2003,19:977-980.
39. H. Fudouzi, T. Sawada. Photonic rubber sheets with tunable color by elastic deformation. Langmuir 2006,22:1365-1368.
40. J.X. Wang, Y.Q. Wen, H.L. Ge, Z.W. Sun, Y.M. Zheng, Y.L. Song, et al. Simple fabrication of full color colloidal crystal films with tough mechanical strength. Macromolecular Chemistry and Physics 2006,207:596-604.
41. I.D. Hosein, C.M. Liddell. Homogeneous, core-shell, and hollow-shell ZnS colloid-based photonic crystals. Langmuir 2007,23:2892-2897.
42. W. Wohlleben, F.W. Bartels, S. Altmann, R.J. Leyrer. Mechano-optical octave-tunable elastic colloidal crystals made from core-shell polymer beads with self-assembly techniques. Langmuir 2007,23:2961-2969.
43. B. Viel, T. Ruhl, G.P. Hellmann. Reversible deformation of opal elastomers. Chemistry of Materials 2007,19:5673-5679.
44. C.E. Finlayson, A.I. Haines, D.R.E. Snoswell, A. Kontogeorgos, S. Vignolini, Baumberg JJ, et al. Interplay of index contrast with periodicity in polymer photonic crystals. Applied Physics Letters 2011,99.
45. C.G. Schaefer, D.A. Smolin, G.P. Hellmann, M. Gallei. Fully Reversible Shape Transition of Soft Spheres in Elastomeric Polymer Opal Films. Langmuir 2013,29:11275-11283.
46. 羅名譽,「快速合成具核殼結構之均一粒徑次微米球與其表面改質之特性研究」,國立中央大學化學工程與材料工程學系碩士論文 (2009)。
47. 李雨純,「製備具軟殼結構之均一粒徑次微米球」,國立中央大學化學工程與材料工程學系碩士論文 (2011)。