| 研究生: |
郭展維 Chan-Wei Kuo |
|---|---|
| 論文名稱: |
磁場對電解水產氫效率之研究 The improvement of water electrolysis efficiency by magnetic forces |
| 指導教授: |
洪勵吾
Lih-Wu Hourng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 電解水 、勞侖茲力 、磁流體動力學(MHD) 、磁性材料 |
| 外文關鍵詞: | Lorenz force, magnetization, MHD(magnetohydrodynamic), water electrolysis |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電解水產氫(water electrolysis)是目前製造氫氣常用之方法,具有高效能、產生氫氣純度高、使用便利等特色。而氫氣在釋放能源的過程中,並不會產生二氧化碳等造成溫室效應之氣體,基於近年來對於環保之重視及其獨有之優勢,未來相當具發展淺力。
本實驗利用鐵磁性(ferromagnetism)材料鎳、順磁性(paramagnetism)材料白金、逆磁性(diamagnetism)材料石墨等不同磁性之電極材料,及特製電解裝置,在不額外浪費能源下,由恆電位儀所記錄得到的資料,探討電解液濃度、電壓、電極間距加入不同方向磁場後受磁流體動力學(MHD)中勞侖茲力(Lorentz force)之影響。
在常溫下對於電解水加入磁場之實驗,由拍攝圖片顯示出,垂直於固定電流方向之兩個不同磁力方向,所形成之勞侖茲力使電解液產生向上及向下之流場對流效應,實驗結果顯示加入磁場狀態下:鐵磁性材料受到磁力作用,其磁化之效應較順磁材料及逆磁材料來的大,因此與勞侖茲力有相加或相乘之效果亦大。
常溫下、電極間距2mm、電壓4V,加入磁場狀態下:鐵磁性磁料鎳電極所提升效率為14%;順磁材料之白金電極提升之效率為10%;逆磁材料之石墨電極則為極小之增加值。
Among the methods of hydrogen production, water electrolysis has many advantages, such as high efficiency, high purity in producing hydrogen, easy in use, etc., and thus becomes one of popular methods. During the process of releasing energy, hydrogen produces no green-house-effect gas and has potential as a energy carrier in the future.
In this study, we use ferromagnetism material (nickel), paramagnetism material (platinum), and diamagnetism material (graphite) as electrodes, respectively. Experimental set-up are modified to study the effects of working parameters, such as concentration of electrolyte, current, voltage, electrode distance and magnetic field on the water electrolyies. As water electrolysis is conduced with an electric field perpendicular to a magnetic field, Lorenz force will produce magnetohydrodynamic (MHD) convection and effect the gas bubble evolution.
At 25oC, water electrolysis is operated in a static, uniform magnetic field, which is superimposed perpendicular to the current direction in order to make upward and downward MHD convection. The results of experiment show that magnetization of ferromagnetism material is influenced greatly than the others by magnetic field.The maximum current density enhancement of ferromagnetism material(Ni) is about 14% , while it is about 14% for paramagnetism material(Pt) , The current density enhancement of diamagnetism material (C)is few.
1. 黃啟峰,二氧化碳與地球暖化,科學發展,34-39頁,五 月(2007),413期。
2. 曲新生、陳發林,氫能技術,五南出版社, 5-6頁(2006)。
3. D.Lj. Stojić, M.P. Marčeta, S.P. Sovilj, and Š.S. Miljanić, “Hydrogen generation from water electrolysis—possibilities of energy saving,” Journal of Power Sources, Vol. 118, pp. 315-319(2003).
4. N. Nagai, M. Takeuchi, T. Kimura, and T. Oka, ”Existence of optimum space between electrodes on hydrogen production by water electrolysis”, International Journal of Hydrogen Energy, Vol. 28, pp. 35-41(2003).
5. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting,”International Journal of Hydrogen Energy,Vol. 26, pp. 653-659(2001).
6. M.P. Marčeta, and D.L.. Stojić, ”Comparison of different electrode materials–energy requirements in the electrolytic hydrogen evolution process”, Journal of Power Sources, Vol. 157, pp. 758-764(2006).
7. F. de Souza, and J.C. Padilha, “Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: towards the best device”, Journal of Power Sources, Vol. 164, pp. 792-798(2007).
8. R.F. de Souza, and J.C. Padilha, “Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis”, Electrochemistry Communications, Vol. 8, pp. 211-216(2006).
9. Matsushima , A. Bund, W. Plieth ,S. Kikuchi and Y. Fukunaka, “Copper electrodeposition in a magnetic field”, Electrochimica Acta,Vol.53, pp. 161–166(2007).
10. T. Weier, J. Huller, G. Gerbeth, and F.Weiss, “Lorentz force influence on momentum and mass transfer in natural convection copper electrolysis”, Chemical Engineering Science,Vol 60, pp. 293 – 298.(2005).
11. A. Bund, S. Koehler, H.H. Kuehnlein, and W. Plieth, “Magnetic field effects in electrochemical reactions”, Electrochimica Acta,Vol. 49, pp. 147–152. (2003).
12. T. Iida, H. Matsushima, and Y. Fukunaka,“Water Electrolysis under a magnetic Field”, Journal of The Electrochemical Society, Vol. 154 (8),E112-E115(2007).
13. H. Matsushimaa, D. Kiuchib,and Y. Fukunaka,“Measurement of dissolved hydrogen supersaturation during waterelectrolysis in a magnetic field” , Journal of the ElectrochimicaActa, Vol. 54 , pp. 5858-5862(2009).
14. J. Ivy, Summery of electrolytic hydrogen production: milestone completion report, National Renewable Energy Laboratory, Colorado(2004).
15. 李言涛,薛永金,”水系统的磁化处理技术及其应用”, 工業水處理,Vol. 27, No.11, pp. 11-14(2007)。
16. P. Ridge ,“Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques, ” Noyes Data corporation, New Jersey, M. S.Casper(1978).
17. 章宗穰,諾貝爾獎百年鑑運動中的分子熱力學與反應動力學,世茂出版社, pp .45, 66-67, 91(2004)。
18. 魚崎浩平,喜多英明同撰,黃忠良譯,基本電化學,復漢出版社(1983).
19. J. Koryta, J. Dvořák, and L. Kavan, Principles of electrochemistry,second edition, John Wiley, New York (1993).
20. 田福助,電化學基本原理與應用,五洲出版社 (2004)。
21. M. Kuhn, and G. Kreysa, ’’Modelling of gas-evolving electrolysis cells.The iR drop at gas-evolving electrodes,’’ Journal of Applied Electrochemistry, Vol. 19, pp. 720-728 (1989).
22. O.Darrigol, Electrodynamics from Ampère to Einstein, Oxford, [England]: Oxford University, pp. 327(2000).
23. D. J. Griffiths, Introduction to electrodynamics (3rd ed.).Prentice Hall,pp. 204, 326, 541(1998).
24. 張啟陽,電磁學,東華書局(1992)。
25. http://www.ndt-ed.org/EducationResources/CommunityCollege/MagParticle/Physics/HysteresisLoop.htm
26. M. D. Simona, L. O. Heflinger and A. K. Geim, Diamagnetically stabilized magnet levitation, American Association of Physics Teachers (2001).
27. Young, Hugh D., University Physics, 8th Ed., Addison-Wesley, 1992.
28. 田中正三郎著、賴耿陽譯著,應用電化學,應用新科技-應用電化學,復漢出版社印行(1998)。