跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃柏諭
Bo-Yu Huang
論文名稱: 以形狀因子為基礎之快速熱阻估算法
指導教授: 鍾德元
Te-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 65
中文關鍵詞: LED形狀因子熱阻計算模擬退火法有限元素分析法
外文關鍵詞: LED, Shape factor, Thermal resistance, Simulated annealing, Finite element analysis
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用形狀因子(Shape factor)為基礎,搭配有限元素分析(FEA)模擬軟體建立三維軸對稱模型,並整理出其形狀因子與幾何形狀之關係圖,經數學式擬合後建立快速熱阻估算法,快速熱阻估算法不僅可應用於軸對稱式結構之熱阻計算,更可應用於複合式結構、方形結構與非對稱式結構等熱阻計算,最後搭配模擬退火法優化一實際燈具之熱阻。快速熱阻估算法不僅可以有效且迅速的估算物體之熱阻,也可大幅減少燈具設計階段之時間、人力與金錢的消耗。


    In this research, shape factor is regarded as basis and finite element analysis (FEA) software is used to build the three-dimensional axisymmetric model, and then find the figure related to shape factor and geometric shape. After fitting the curve of figure, the rapid estimation of thermal resistance method is built. The rapid estimation of thermal resistance method can apply to not only axisymmetric structures but also composite structures, square structures and asymmetric structures. Finally, the thermal resistance of an actual LED thermal module will be optimized by simulated annealing. The rapid estimation of thermal resistance method cam not only estimate the thermal resistance of the sample effectively and rapidly but also reduce the time, manpower and money during the period of design.

    摘要 i Abstract ii 致謝 iii 圖目錄 vii 表目錄 xi 第一章 緒論 1 1-1 前言 1 1-2研究動機 3 第二章 基礎理論 5 2-1 引言 5 2-2 熱傳遞基本理論 5 2-2-1 傳導 6 2-2-2 對流 7 2-3 熱阻 8 2-4形狀因子(Shape factor) 10 第三章 形狀因子之模型建立與模擬分析 12 3-1 COMSOL Multiphysics軟體分析流程 12 3-2 形狀因子之三維軸對稱模型建立 13 3-3 模擬分析與擬合數學式推導 16 3-3-1 模擬結果分析 16 3-3-2 有效物體半徑定義 17 3-3-3 形狀因子與熱阻之擬合數學示推導 20 3-4 單一結構之熱阻計算與驗證 23 3-4-1 改變物體熱傳導係數 23 3-4-2 改變物體厚度、物體半徑與熱源半徑 24 3-5 複合式結構之熱阻計算與驗證 25 3-6 方形結構之熱阻計算 31 3-7 方形不對稱結構之熱阻計算 34 第四章 以模擬退火法進行複合式結構之熱阻最佳化計算 37 4-1 引言 37 4-2 模擬退火法 37 4-2-1模擬退火法簡介 37 4-2-2模擬退火法流程 38 4-2-3模擬退火法之驗證 40 4-3 運用實際燈具散熱模組進行最佳化處理 41 第五章 結論 46 參考文獻 48

    [1] H. J. Round, "A note on carborundum," Electrical world, vol. 49, p. 309, 1907.
    [2] N. Holonyak Jr and S. Bevacqua, "Coherent (visible) light emission from Ga (As1− xPx) junctions," Applied Physics Letters, vol. 1, pp. 82-83, 1962.
    [3] J. Allen, M. Moncaster, and J. Starkiewicz, "Electroluminescent devices using carrier injection in gallium phosphide," Solid-State Electronics, vol. 6, pp. 95-102, 1963.
    [4] H. Grimmeiss and H. Scholz, "Efficiency of recombination radiation in GaP," Physics Letters, vol. 8, pp. 233-235, 1964.
    [5] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal annealing effects on p-type Mg-doped GaN films," Japanese Journal of Applied Physics, vol. 31, p. L139, 1992.
    [6] S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Japanese Journal of Applied Physics Part 2 Letters, vol. 34, pp. L797-L797, 1995.
    [7] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, "Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material," ed: Google Patents, 1999.
    [8] 許世杰, "節能照明技術-淺談發光二極體," 科學月刊, vol. 532期, 04 2014.
    [9] "Autodesk CFD, http://www.autodesk.com.tw/products/cfd/overview."
    [10] "中華民國國家標準, "CNS15498(發光二極體模組之熱阻量測法)," 台灣, 中華民國一百年.."
    [11] "中華民國國家標準, "CNS15248(發光二極體元件之熱阻量測法)," 台灣, 中華民國九十八年.."
    [12] T. L. Bergman, F. P. Incropera, and A. S. Lavine, Fundamentals of heat and mass transfer: John Wiley & Sons, 2011.
    [13] C. Kittel, Introduction to solid state physics: Wiley, 2005.
    [14] F. Incropera and D. DeWitt, "Introduction to heat transfer," 1985.
    [15] T. Fujii and H. Imura, "Natural-convection heat transfer from a plate with arbitrary inclination," International Journal of Heat and Mass Transfer, vol. 15, pp. 755-767, 1972.
    [16] K. Yamagata, K. Nishikawa, S. Hasegawa, T. Fujii, and S. Yoshida, "Forced convective heat transfer to supercritical water flowing in tubes," International Journal of Heat and Mass Transfer, vol. 15, pp. 2575-2593, 1972.
    [17] "COMSOL Multiphysics software, http://www.comsol.com."
    [18] D. A. Ratkowsky and D. E. Giles, Handbook of nonlinear regression models: Marcel Dekker New York, 1990.
    [19] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," science, vol. 220, pp. 671-680, 1983.
    [20] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by fast computing machines," The journal of chemical physics, vol. 21, pp. 1087-1092, 1953.
    [21] A. Corana, M. Marchesi, C. Martini, and S. Ridella, "Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm Corrigenda for this article is available here," ACM Transactions on Mathematical Software (TOMS), vol. 13, pp. 262-280, 1987.
    [22] H. M. Cho and H. J. Kim, "Metal-core printed circuit board with alumina layer by aerosol deposition process," Electron Device Letters, IEEE, vol. 29, pp. 991-993, 2008.
    [23] A. A. Luo, "Magnesium: current and potential automotive applications," jom, vol. 54, pp. 42-48, 2002.
    [24] A. Boudenne, L. Ibos, E. Gehin, and Y. Candau, "A simultaneous characterization of thermal conductivity and diffusivity of polymer materials by a periodic method," Journal of Physics D: Applied Physics, vol. 37, p. 132, 2004.
    [25] J. Choi, T. Kwon, J. Park, J. Kim, and C. Kim, "A study on development of a die design system for diecasting," The International Journal of Advanced Manufacturing Technology, vol. 20, pp. 1-8, 2002.

    QR CODE
    :::