| 研究生: |
林建安 Chien-an Lin |
|---|---|
| 論文名稱: |
利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用 Characterization of multi-layered SiOxNy:H/SiCxNy:H antireflection coatings by electron cyclotron resonance chemical vapor deposition and their application on silicon solar cells |
| 指導教授: |
陳一塵
I-chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 抗反射層 、氮氧化矽 、碳氮化矽 |
| 外文關鍵詞: | Silicon oxynitride, Silicon carbonitride, Antireflection coatings |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於太陽電池而言,擁有良好的抗反射塗層,可以減少光損耗,進而提高了光電轉換效率。 氫化氮化矽層(SiNx:H)是使用最廣泛的矽晶體太陽能電池的單層抗反射膜(ARCS)。然而單層抗反射膜,只能在特定波長下獲得某個波段的最低反射率。為了進一步擴大抗反射波段,減少入射光在太陽能電池反射而損失,在許多研究紛紛提出由兩種以上不同的材料(如MgF2/CeO2,SiO2/TiO2和SiO2/SiNx)[1-3]的雙堆疊結構的抗反射層,相較於單層膜的僅單一波長抗反射,其擁比較寬的波長範圍內的抗反射效果。
在這項研究中,我們提出了一個新的抗反射結構,利用電子迴旋共振化學氣相沉積(ECRCVD)系統沉積SiOxNy:H/ SiCxNy:H的多層結構。藉由調整SiH4、CO2,CH4和N2等氣體的流量比,沉積SiOxNy:H和SiCxNy:H薄膜。經光譜橢偏儀測量的結果,調整不同流量比之SiOxNy:H和SiCxNy的折射率,可被調整在1.46〜2.05和2.06〜2.96 (633 nm)之範圍。
利用每一層薄膜的光學參數設計不同堆疊之抗反射層,並模擬SiOxNy:H/ SiCxNy:H多層結構的反射率、穿透率,經由模擬軟體優化厚度,最佳化之抗反射膜將藉由ECRCVD沉積於矽基板上,經UV-VIS分光光譜儀測量反射率,並和模擬結果進行比較。在單晶矽上反射率可降低至4.12%,而多晶矽上的抗反射率,可降到1.93%。並試圖將抗反射膜應用於多晶矽太陽能電池上,觀看其在電池上之表現。
It is well-known that a good antireflective coating, which could reduce the photocurrent loss and enhance the photoelectric conversion efficiency, is important for solar cells. Hydrogenated silicon nitride layers (SiNx:H) are most widely used for crystalline silicon solar cells as single-layer antireflection coatings (ARCs). However, low reflectance could only be obtained from a single-layer ARC at a specific wavelength. In order to further minimize the front reflection of solar cells, double-layer ARCs consisting of two different materials (such as MgF2/CeO2, SiO2/TiO2 and SiO2/SiN) have been developed due to their low reflectance at a relatively wide wavelength range
In this study, we propose a new ARC structure of SiOxNy:H/SiCxNy:H multilayer films deposited by electron cyclotron resonance chemical vapor deposition (ECRCVD) system. By adjusting the precursor gas flow ratios of SiH4、CO2、CH4 and N2, the composition of the SiOxNy:H and SiCxNy:H thin films could be adjusted. From our preliminary results, the refractive indexes of the SiOxNy:H and SiCxNy:H films measured by the spectroscopic ellipsometer are in a range of 1.46~2.05 and 2.06~2.96 (at 633 nm), respectively. These data will be used for the reflectance simulation to evaluate the performance of SiOxNy:H/SiCxNy:H multilayer structures and obtain the theoretically optimized thickness and optical parameters of each layer, which could be used as references for tuning the growth recipes of multi-layer SiOxNy:H/SiCxNy:H ARCs. After depositing the multi-layer ARCs on Si wafers, the reflectance will be measured by UV-VIS spectrophotometer and compared with the simulation results.
1. Chen, Z., et al., A novel and effective PECVD SiO2/SiN antireflection coating for Si solar cells. Electron Devices, IEEE Transactions on, 1993. 40(6):1161-1165.
2. Lee, S., S. Choi, and J. Yi, Double-layer anti-reflection coating using MgF2 and CeO2 films on a crystalline silicon substrate. Thin Solid Films, 2000. 376(1): 208-213.
3. Pettit, R.B., C.J. Brinker, and C.S. Ashley, Sol-gel double-layer antireflection coatings for silicon solar cells. Solar Cells, 1985. 15(3): 267-278.
4. Chitre, S.R., A high volume cost efficient production macrostructuring process. 13th IEEE Photovoltaic specialist conference, 1978: 152–154.
5. Macdonald, D.H., et al., Texturing industrial multicrystalline silicon solar cells. Solar Energy, 2004. 76(1–3): 277-283.
6. Junghänel, M., et al. Black multicrystalline solar modules using novel multilayer antireflection stacks. in Proc. 25th Eur. Photovoltaic Solar Energy Conf. 2010:511
7. Zhang, X.-T., et al., Self-Cleaning Particle Coating with Antireflection Properties. Chem Mater, 2005. 17(3): 696-700.
8. Walheim, S., et al., Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings. Science, 1999. 283(5401): 520-522.
9. Chen, Z., et al., A novel and effective PECVD SiO2/SiN antireflection coating for Si solar cells. Electron Devices, IEEE Transactions on, 1993. 40(6): 1161-1165.
10. Duttagupta, S., et al., Optimised Antireflection Coatings using Silicon Nitride on Textured Silicon Surfaces based on Measurements and Multidimensional Modelling. Energy Procedia, 2012. 15(0): 78-83.
11. Derbali, L. and H. Ezzaouia, Vanadium-based antireflection coated on multicrystalline silicon acting as a passivating layer. Solar Energy, 2012. 86(5): 1504-1510.
12. Kim, J., et al., Double antireflection coating layer with silicon nitride and silicon oxide for crystalline silicon solar cell. Journal of Electroceramics, 2012: 1-5.
13. Rabha, M.B., et al., Combination of silicon nitride and porous silicon induced optoelectronic features enhancement of multicrystalline silicon solar cells. physica status solidi (c), 2011. 8(6): 1874-1877.
14. Chun-Wei, C., et al. Effects of advanced dual anti-reflection layer coating on crystalline silicon solar cell efficiency. in Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE. 2011.
15. Gong, D., et al., SiNx Double Layer Antireflection Coating by Plasma-Enhanced Chemical Vapor Deposition for Single Crystalline Silicon Solar Cells. Japanese Journal of Applied Physics, 2011. 50(8).
16. J. Dupuis, J.-F.L., E. Fourmond, V. Mong-The Yen, O. Nichiporuk, N. Le Quang, M. Lemiti, SiOxNy - SiNx Double Antireflection Layer for Multicrystalline Silicon Solar Cells. 24th European Photovoltaic Solar Energy Conference 2009: 1636 - 1639.
17. Lipiński, M., et al., Investigation of graded index SiOxNy antireflection coating for silicon solar cell manufacturing. physica status solidi (c), 2007. 4(4): 1566-1569.
18. Aroutiounian, V., K. Martirosyan, and P. Soukiassian, Low reflectance of diamond-like carbon/porous silicon double layer antireflection coating for silicon solar cells. Journal of Physics D: Applied Physics, 2004. 37(19): L25.
19. Richards, B., et al., TiO2 DLAR coatings for planar silicon solar cells. Progress in Photovoltaics: Research and Applications, 2003. 11(1): 27-32.
20. Chen, Z. and A. Rohatgi, Method for low temperature plasma enhanced chemical vapor deposition (PECVD) of an oxide and nitride antireflection coating on silicon, 1995, Google Patents.
21. Sheppard, P.A., Handbook of Geophysics. Geophysical Journal of the Royal Astronomical Society, 1960. 3(4): 476-478.
22. Macleod, H.A., Thin-film optical filters. 1986: Hilger.
23. Chen, D., Anti-reflection (AR) coatings made by sol–gel processes: A review. Solar Energy Materials and Solar Cells, 2001. 68(3–4): 313-336.
24. 李正中,薄膜光學與鍍膜技術. 2006: 藝軒.
25. Mastro, M.A., et al., High-reflectance III-nitride distributed Bragg reflectors grown on Si substrates. Applied Physics Letters, 2005. 87(24): 241103-241103-3.
26. Bouhafs, D., et al., Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells. Solar Energy Materials and Solar Cells, 1998. 52(1): 79-93.
27. Skaar, J., Fresnel equations and the refractive index of active media. Physical Review E, 2006. 73(2): 026605.
28. Jedrzejowski, P., et al., Mechanical and optical properties of hard SiCN coatings prepared by PECVD. Thin Solid Films, 2004. 447: 201-207.
29. Dupuis, J., et al., Impact of PECVD SiON stoichiometry and post-annealing on the silicon surface passivation. Thin Solid Films, 2008. 516(20): 6954-6958.
30. Aspnes, D., The accurate determination of optical properties by ellipsometry. Handbook of Optical Constants of Solids, 1985. 1: 89-112.
31. Rebib, F., et al., Effect of composition inhomogeneity in a-SiOxNy thin films on their optical properties. Optical Materials, 2009. 31(3): 510-513.
32. Yu, W., et al., Optical absorption spectra analysis of silicon-rich hydrogenated amorphous silicon nitride thin films. 2005: 420-423.
33. Zhao, Y., et al., Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure. Opt. Express, 2012. 20(10): 11121-11136.
34. Kurtz, S.R., et al. Passivation of interfaces in high-efficiency photovoltaic devices. in MRS Proceedings. 1999. Cambridge Univ Press.
35. Gomez, F., et al., SiCN alloys deposited by electron cyclotron resonance plasma chemical vapor deposition. Applied physics letters, 1996. 69(6): 773-775.