跳到主要內容

簡易檢索 / 詳目顯示

研究生: 余紹華
Shao-Hua Yu
論文名稱: 電化學放電加工藍寶石極間現象觀察與加工技術研究
Observation of Gap Phenomena and Developement Processing Technology for ECDM of Sapphire
指導教授: 崔海平
Hai-Ping Tsui
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 126
中文關鍵詞: 電化學放電加工氣膜極間間隙藍寶石
外文關鍵詞: electrochemical discharge machining, gas film, electrode gap, sapphire
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的在發展電化學放電加工非導電藍寶石極間現象觀察與加工技術,由於電化學放電中氣膜厚度、放電火花情形及液滴滑落頻率都將影響加工品質與加工效率,故本研究採用高速攝影機拍攝與觀察電化學放電時的氣膜厚度以及氣膜包覆情形,以及觀察電化學放電時極間現象,藉由實驗了解氣膜形成現象與加工特性。
    本研究規劃與執行藍寶石電化學放電加工參數實驗,同時觀察電化學放電時極間現象,加工參數包含有液面高度、工作電壓、電極轉速及衝擊係數,並分析探討各加工參數對氣膜厚度、電流大小、電極損耗及液滴滑落頻率之影響,期盼能獲得優化之加工參數,克服藍寶石難以加工之困難點。
    實驗結果顯示利用高速攝影機拍攝電化學放電時極間現象,能有效觀察氣膜厚度以及氣膜包覆情形,較高的氣泡結合率可以增加加工能力及減少側向放電,所以本實驗藉由觀察分析探討改善氣膜穩定性及加工能力,並能獲得較佳的加工孔深,實驗證明在液面高度700 µm、工作電壓48 V、衝擊係數50 %及工具電極轉速200 rpm之下,可獲得較佳的平均孔深86.7 µm、孔徑129.5µm。

    關鍵字:電化學放電加工、氣膜、極間間隙、藍寶石


    This study aimed to observe of gap phenomena and develop the electrochemical discharge machining method for sapphire. It was found that the thickness of the gas film, the discharge spark, and the droplet sliding frequency in the electrochemical discharge affected the processing quality and efficiency. This study used a high-speed camera to photograph and observe the bubble formation, gas film coating, and the phenomenon between tool electrode and workpiece during electrochemical discharge processes. The formation mechanism and processing characteristics of the gas film were understood through experiments.
    Furthermore, this study executed the sapphire electrochemical discharge machining parameter experiment and observed the electrode gap phenomenon during electrochemical discharge processes. The machining parameters include the liquid level, working voltage, electrode rotational speed, and duty factor. They analyzed and discussed the effect of each machining parameter on the gas film thickness, current value, electrode consumption, and droplet slip frequency. Moreover, this study aimed to obtain optimized processing parameters to overcome the difficulty of processing sapphire.
    The results show that a high-speed camera could effectively capture the bubble formation and gas film coating situation during electrochemical discharge processes. In addition, a higher bubble incorporation rate can increase the machining capability and reduce the side discharge phenomenon. Therefore, this study could obtain better processing hole depth through observation and analysis to improve gas film stability and machining capability. Moreover, at liquid level of 700 µm, working voltage of 48 V, duty factor of 50 %, and tool electrode rotational speed of 200 rpm, better average hole depth of 86.7 μm and pore diameter of 129.5 μm could be obtained.

    Keywords: electrochemical discharge machining; gas film; electrode gap; sapphire

    摘 要 i ABSTRACT ii 誌 謝 iv 目 錄 v 圖目錄 vii 表目錄 xi 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機及目的 2 1-3 文獻回顧 5 1-4 論文架構 13 第二章 實驗基礎理論 14 2-1 電化學放電加工的基礎理論 14 2-2 電化學放電加工之放電火花產生機制 16 2-3 電化學放電加工之材料移除機制 19 第三章 實驗設備與材料 21 3-1 實驗方法 21 3-2 實驗相關設備 24 3-3 實驗材料 34 3-4 實驗流程與方法 38 第四章 結果與討論 48 4-1 液面高度對加工之影響探討 48 4-2 不同參數下對加工結果之影響 57 4-2-1 工作電壓之影響 57 4-2-2 工具電極轉速之影響 72 4-2-3 衝擊係數之影響 87 第五章 結論 102 未來展望 104 參考文獻 105

    [1] 林志光, 江振瑞, 陳彥文, 何正榮, 李朱育, 崔海平, 董必正, 5G智慧自動化工廠之實現 - 以藍寶石基板加工為例, 中央大學、台灣, 2020
    [2] C.-H. Yang, H.-P. Tsui, “Study on ultrasonic-assisted WECDM of quartz wafer with continuous electrolyte flow”, The International Journal of Advanced Manufacturing Technology, Vol.118, pp.1061-1076, 2022.
    [3] V. Raghuram, T. Pramila, Y.G. Srinivasa, K. Narayanasamy, “Effect of the circuit parameters on the electrolytes in the electrochemical discharge phenomenon”, Journal of Materials Processing Technology, Vol.52, pp.301-318, 1995.
    [4] I. Basak, A. Ghosh, “Mechanism of spark generation during electrochemical discharge machining: a theoretical model and experimental verification”, Journal of Materials Processing Technology, Vol.62, pp.46-53, 1996.
    [5] V. K. Jain, P. M. Dixit & P. M. Pandey, “On the analysis of the electrochemical spark machining process”, International Journal of Machine Tools and Manufacture, Vol.39, pp.165-186, 1999.
    [6] C.T. Yang, S.S. Ho, B.H. Yan, “Micro Hole Machining of Borosilicate Glass through Electrochemical Discharge Machining (ECDM)”, KEM, Vol.196, pp.149-166, 2001.
    [7] H.J. Lim, Y.M. Lim, S.H. Kim, Y.K. Kwak, “Self-aligned microtool and electrochemical discharge machining (ECDM) for ceramic materials”, Optical Engineering for Sensing and Nanotechnology (ICOSN '01), Vol.348, Yokohama、Japan, 2001.
    [8] T.K.K.R. Mediliyegedara, A.K.M. De Silva, D.K. Harrison, J.A. McGeough, “An intelligent pulse classification system for electro-chemical discharge machining (ECDM) - a preliminary study”, Journal of Materials Processing Technology, Vol.149, pp.499-503, 2004.
    [9] W.Y. Peng, Y.S. Liao, “Study of electrochemical discharge machining technology for slicing non-conductive brittle materials”, Journal of Materials Processing Technology, Vol.149, pp.363-369, 2004.
    [10] R. Wüthrich, L.A. Hof, A. Lal, K. Fujisaki, H. Bleuler, P. Mandin, G. Picard, “Physical principles and miniaturization of spark assisted chemical engraving (SACE)”, Journal of Micromechanics and Microengineering, Vol.15, pp.S268-S275, 2005.
    [11] R. Wüthrich, U. Spaelter, H. Bleuler, “The current signal in spark-assisted chemical engraving (SACE): what does it tell us?”, Journal of Micromechanics and Microengineering. Vol.16, pp.779-785, 2006.
    [12] D.-J. Kim, Y. Ahn, S.-H. Lee, Y.-K. Kim, “Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass”, International Journal of Machine Tools and Manufacture, Vol.46, pp.1064-1067, 2006.
    [13] R. Wüthrich, L.A. Hof, “The gas film in spark assisted chemical engraving (SACE)—A key element for micro-machining applications”, International Journal of Machine Tools and Manufacture, Vol.46, pp.828-835, 2006.
    [14] J. West & A. Jadhav, “ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities”, Journal of Micromechanics and Microengineering, Vol.17, pp.403-409, 2007.
    [15] Z.-P. Zheng, H.-C. Su, F.-Y. Huang, B.-H. Yan, “The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process”, Journal of Micromechanics and Microengineering, Vol.17, pp.265-272, 2007.
    [16] Z.-P. Zheng, J.-K. Lin, F.-Y. Huang, B.-H. Yan, “Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage”, Journal of Micromechanics and Microengineering, Vol.18, pp.025014, 2008.
    [17] M. Jalali, P. Maillard, R. Wüthrich, “Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges”, Journal of Micromechanics and Microengineering, Vol.19, pp.045001,2009.
    [18] M.-S. Han, B.-K. Min, S.J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte”, Journal of Micromechanics and Microengineering, Vol.19, pp.065004, 2009.
    [19] X.D. Cao, B.H. Kim, C.N. Chu, “Micro-structuring of glass with features less than 100μm by electrochemical discharge machining”, Precision Engineering, Vol.33, pp.459-465, 2009.
    [20] C.-K. Yang, C.-P. Cheng, C.-C. Mai, A. Cheng Wang, J.-C. Hung, B.-H. Yan, “Effect of surface roughness of tool electrode materials in ECDM performance”, International Journal of Machine Tools and Manufacture, Vol.50, pp.1088-1096, 2010.
    [21] C.-K. Yang, K.-L. Wu, J.-C. Hung, S.-M. Lee, J.-C. Lin, B.-H. Yan, “Enhancement of ECDM efficiency and accuracy by spherical tool electrode”, International Journal of Machine Tools and Manufacture, Vol.51, pp.528-535, 2011.
    [22] C. Wei, K. Xu, J. Ni, A.J. Brzezinski, D. Hu, “A finite element based model for electrochemical discharge machining in discharge regime”, The International Journal of Advanced Manufacturing Technology, Vol.54, pp.987-995, 2011.
    [23] M.R. Razfar, A. Behroozfar, J. Ni, “Study of the effects of tool longitudinal oscillation on the machining speed of electrochemical discharge drilling of glass”, Precision Engineering, Vol.38, pp.885-892, 2014.
    [24] B. Jiang, S. Lan, J. Ni, “Experimental Investigation of Drilling Incorporated Electrochemical Discharge Machining”, in: Volume 2: Processing, American Society of Mechanical Engineers, Detroit Michigan、USA, 2014.
    [25] B. Jiang, S. Lan, J. Ni, Z. Zhang, “Experimental investigation of spark generation in electrochemical discharge machining of non-conducting materials”, Journal of Materials Processing Technology, Vol.214, pp.892-898, 2014.
    [26] B. Jiang, S. Lan, K. Wilt, J. Ni, “Modeling and experimental investigation of gas film in micro-electrochemical discharge machining process”, International Journal of Machine Tools and Manufacture, 90, pp.8-15, 2015.
    [27] A.B. Kamaraj, S.K. Jui, Z. Cai, M.M. Sundaram, “A mathematical model to predict overcut during electrochemical discharge machining”, The International Journal of Advanced Manufacturing Technology, Vol.81, pp.685-691, 2015.
    [28] Z. Zhang, L. Huang, Y. Jiang, G. Liu, X. Nie, H. Lu, H. Zhuang, “A study to explore the properties of electrochemical discharge effect based on pulse power supply”, The International Journal of Advanced Manufacturing Technology, Vol.85, pp.2107-2114, 2016.
    [29] M. Goud, A.K. Sharma, C. Jawalkar, “A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate”, Precision Engineering, Vol.45, pp.1-17, 2016.
    [30] M. Singh, S. Singh, “Electrochemical discharge machining: A review on preceding and perspective research, Proceedings of the Institution of Mechanical Engineers”, Part B: Journal of Engineering Manufacture, Vol.233, pp.1425-1449, 2019.
    [31] M. Hajian, M.R. Razfar, S. Movahed, “An experimental study on the effect of magnetic field orientations and electrolyte concentrations on ECDM milling performance of glass”, Precision Engineering, Vol.45, pp.322-331, 2016.
    [32] N. Sabahi, M.R. Razfar, M. Hajian, “Experimental investigation of surfactant-mixed electrolyte into electrochemical discharge machining (ECDM) process”, Journal of Materials Processing Technology, Vol.250, pp.190-202, 2017.
    [33] Y. Liu, Z. Wei, M. Wang, J. Zhang, “Experimental investigation of micro wire electrochemical discharge machining by using a rotating helical tool”, Journal of Manufacturing Processes, Vol.29, pp.265-271, 2017.
    [34] S. Elhami, M.R. Razfar, “Study of the current signal and material removal during ultrasonic-assisted electrochemical discharge machining”, The International Journal of Advanced Manufacturing Technology, Vol.92, pp.1591-1599, 2017.
    [35] R.K. Arya, A. Dvivedi, “Investigations on quantification and replenishment of vaporized electrolyte during deep micro-holes drilling using pressurized flow-ECDM process”, Journal of Materials Processing Technology, Vol.266, pp.217-229, 2019.
    [36] China, W. Tang, “Experimental Investigation of Gas Evolution in Electrochemical Discharge Machining Process”, International Journal of Electrochemical Science, Vol. 14, pp.970-984, 2019.
    [37] V.G. Ladeesh, R. Manu, “Machining of fluidic channels on borosilicate glass using grinding-aided electrochemical discharge engraving (G-ECDE) and process optimization”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol.40, pp.299, 2018.
    [38] M. Sundaram, Y.-J. Chen, K. Rajurkar, “Pulse electrochemical discharge machining of glass-fiber epoxy reinforced composite, CIRP Annals, Vol.68, pp.169-172, 2019.
    [39] China., X. Shi, “Investigation of the Material Removal Mechanism in Electrochemical Discharge Drilling Using a High-Speed Rotating Helical Tool-Electrode”, International Journal of Electrochemical Science, pp.9239-9254, 2019.
    [40] J. Bian, B. Ma, X. Liu, L. Qi, “Experimental Study of Tool Wear in Electrochemical Discharge Machining”, Applied Sciences, Vol.10, pp.5039, 2020.
    [41] J. Arab, P. Dixit, “Influence of tool electrode feed rate in the electrochemical discharge drilling of a glass substrate”, Materials and Manufacturing Processes, Vol.35, pp.1749-1760, 2020.
    [42] C.-C. Ho, J.-C. Chen, “Micro-Drilling of Sapphire Using Electro Chemical Discharge Machining”, Micromachines, Vol.11, pp.377, 2020.
    [43] T. Singh, A. Dvivedi, “On prolongation of discharge regime during ECDM by titrated flow of electrolyte”, The International Journal of Advanced Manufacturing Technology, Vol.107, pp.1819-1834, 2020.
    [44] L. Zhang, Z. Yuan, S. Jiang, H. Shen, F. Cao, Z. Ning, Y. Huang, D. Xing, H. Zuo, J. Han, J. Sun, “Cavity etching evolution on the A-plane of sapphire crystal in molten KOH etchant, Journal of Crystal Growth”, Vol.552, pp.125926, 2020.
    [45] B. Appalanaidu, A. Dvivedi, “On controlling of gas film shape in electrochemical discharge machining process for fabrication of elliptical holes”, Materials and Manufacturing Processes, Vol.36, pp.558-571, 2021.
    [46] V. Rajput, M. Goud, N.M. Suri, “Finite Element Modeling for Comparing the Machining Performance of Different Electrolytes in ECDM”, Arabian Journal for Science and Engineering, Vol.46, pp.2097-2119, 2021.
    [47] V. Rajput, S.S. Pundir, M. Goud, N.M. Suri, “Multi-Response Optimization of ECDM Parameters for Silica (Quartz) Using Grey Relational Analysis”, Silicon, Vol.13, pp.1619-1640, 2021.
    [48] 鄭志平, 微電化學放電加工法應用於硼矽玻璃的精微加工技術之研究, 博士論文, 2008.
    [49] 楊程光, 電化學放電加工法應用於石英的精微加工研究, 博士論文. 2011.

    QR CODE
    :::