| 研究生: |
黃政文 Chen-Wen Huang |
|---|---|
| 論文名稱: |
利用高功率脈衝磁控濺鍍於(111)矽基板磊晶成長GaN/ZnO薄膜之研究 |
| 指導教授: | 陳昇暉 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 氮化鎵 、氧化鋅 、濺鍍 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前成長單晶氮化鎵薄膜以有機金屬化學氣相沉積(MOCVD)及分子束磊晶(MBE)為主,有高溫以及高成本的問題,本論文將採用低溫以及低成本且可以大面積製造的高功率脈衝磁控濺鍍法(HiPIMS)取代有機金屬化學氣相沉積(MOCVD)成長氮化鎵薄膜。而用於 GaN 成長的基板材料的另一種有潛力的材料是矽(Si)。
使用矽作為成長 GaN 的基板具有許多優勢,例如:大尺寸,低成本以及在高製程溫度下的熱穩定性。但直接成長GaN於矽基板上,由於晶格常數的巨大不匹配(16.9%),因此需要尋找適當緩衝層來提升氮化鎵薄膜品質,而氧化鋅(ZnO)與氮化鎵之晶格常數僅相差(1.8%),因此本論文使用氧化鋅(ZnO)作為緩衝層,進而提升氮化鎵薄膜之結晶品質。
濺鍍氧化鋅緩衝層後,再進行爐管熱退火。由XRD以及SEM分析出,退火後之氧化鋅薄膜之結晶半高寬由0.201°降至0.182°,並且結晶顆粒變大,代表結晶品質提升,但表面粗糙度(RMS)也由3.59 nm提升至13.4 nm。
由SEM量測分析出,當氧化鋅緩衝層之晶粒越大,氮化鎵薄膜之晶粒也會越大。由TEM量測分析出,當氮化鎵薄膜沉積於氧化鋅緩衝層,氮化鎵之結晶方向會延著氧化鋅緩衝層之結晶方向(0002)成長。由上述之量測分析出,ZnO緩衝層之結晶品質越好,GaN薄膜之結晶品質也會隨之提升。因此本論文之未來工作必須解決ZnO緩衝層之表面粗糙度問題,進而提升氮化鎵薄膜之品質。
Metal organic chemical vapor deposition (MOCVD) is the most popular fabrication method for the crystalline GaN thin film. However, the disadvantages of MOCVD are its high process temperature and the high cost. In this study, a fabrication method high-power impulse magnetron sputtering(HiPIMS) with low-temperature and low-cost are applied to deposit GaN films.
Silicon is one of the attractive substrate materials for GaN, the deposition of thin films with the advantages of low cost and thermal stability at high growth temperatures. But due to the large lattice constant mismatch (16.9%), it is almost impossible to deposit a GaN thin film on the silicon substrate directly. A suitable buffer layer is necessary in between the GaN and the silicon substrate to improve the quality. The lattice constant difference between ZnO and GaN is only 1.8%. So ZnO was used in this research as the buffer layer to improve the crystalline quality of the GaN films.
After depositing the ZnO buffer layer, a thermal annealing process was applied. According to the XRD and SEM analysis, the FWHM of the annealed ZnO(0002) XRD spectrum was decreased from 0.201° to 0.182°, and the crystal grains became larger, indicating that the crystal quality was improved. However, the surface roughness (RMS) was also increased from 3.59 nm to 13.4 nm.
According to the SEM measurement and analysis, the larger the crystal grains of the ZnO buffer layer, the larger the crystal grains of the GaN film. According to the TEM measurement and analysis, when the GaN film was deposited on the ZnO buffer layer, the crystal direction of GaN could grow along the crystal direction (0002) of the ZnO buffer layer. Based on the above measurement and analysis, the better the crystalline quality of the ZnO buffer layer, the better the crystalline quality of the GaN thin film. Therefore, the future work of this research is to improve the surface roughness of the ZnO buffer layer after the annealing, and then it is possible to improve the quality of the GaN films.
[1] H. Shin, K. Jeon, Y. Jang, “Comparison of the Microstructural Characterizations of GaN Layers Grown on Si (111) and on Sapphire,” Journal of the Korean Physical Society, 63(8), 1621-1624(2013)
[2] J. Ross, M. Rubin, “High-quality GaN grown by reactive sputtering,” Materials. Lett, 12(4), 215-218 (1991)
[3] H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, M. Umeno, “Thermal stability of GaN on (111) Si substrate,” J. Cryst. Growth, 189, 178-182 (1998)
[4] H. W. Kim, N. H. Kim, “Preparation of GaN film on ZnO buffer layers by rf magnetron sputtering.” Applied Suface Science, 236(1), 192-197 (2004)
[5] Y. Honda, M. Okano, M. Yamaguchi, N. Sawaki, “Uniform growth of GaN on AlN templated (111)Si substrate by HVPE,” Phys. Status Solidi C, 2, 2225-2178 (2005)
[6] H. W. Kim, S. H. Shim, C. Lee,” Annealing Effects on GaN/ZnO/Si Structures Prepared by RF Magnetron Sputtering,” Recent Developments in Advance Materials and Processes, 518, 137-142 (2006)
[7] Nola Li, E. H. Park, Y. Huang, S. Wang, A. Valencia, B. Nemeth, J. Nause, I. Ferguson, “Growth of GaN on ZnO for solid state lighting applications,” SPIE, 6337, (2006)
[8] S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200mm diameter Si(111),” Appl. Phys. Lett, 101, 082110, (2012)
[9] N. Li, “GaN on ZnO: A new approach to solid state lighting,” (2009)
[10] A. Kobayashi, S. Kawano, Y. Kawaguchi, J. Ohta, H. Fujioka, “Room temperature epitaxial growth of m -plane GaN on lattice-matched ZnO substrates” Applied Physics Letters,90(4), 041908 (2007)
[11] N. L. Barr, E. H. Park, Y. Huang, S. Wang,“Growth of GaN on ZnO for Solid State Lighting Applications” SPIE, 425, 6337, (2006)
[12] H. P. Maruska, J. J. Tietjen “The preparation and properties of vapor deposited single-crystalline GaN,” Applied Physics Letters, 15(10), 327-329 (1969)
[13] M. Wittmer, J. Noser, H. Melchior, “Oxidation kinetics of TiN thin films,” Journal of Applied Physics, 52(11), 6659-6664 (1981).
[14] R. K. Waits, “Edison’s vacuum coating patents,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19(4), 1666- 1673 (2001)
[15] V. Kouznetsov, K. Macák, J. M. Schneider, “A novel pulsed magnetron sputter technique utilizing very high target power densities,” Surface and Coatings Technology, 122(2-3), 290-293 (1999)
[16] A. P. Ehiasarian, R. New, W. D. Münz, “Influence of high power densities on the composition of pulsed magnetron plasmas." Vacuum,” 65(2), 147-154 (2002)
[17] J. Alami, “Plasma Characterization & Thin Film Growth and Analysis in Highly Ionized Magnetron Sputtering,” Diss. Institutionen för fysik, kemi och biologi, 2005.
[18] K. Sarakinos, J. Alami, S. Konstantinidis, "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art." Surface and Coatings Technology, 204(11), 1661-1684 (2010)
[19] H. Takikawa, H. Tanoue, "Review of cathodic arc deposition for preparing droplet-free thin films," IEEE Transactions on Plasma Science, 35(4), 992-999 (2007)
[20] S. Schmidt, Z. Czigány, G. Greczynski, J. Jensen, L. Hultman, "Ion mass spectrometry investigations of the discharge during reactive high power pulsed and direct current magnetron sputtering of carbon in Ar and Ar/N2." Journal of Applied Physics, 112, 013305 (2012)
[21] D. J. Christie, F. Tomasel, W. D. Sproul, D. C. Carter, "Power supply 84 with arc handling for high peak power magnetron sputtering." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 22(4), 1415-1419 (2004)
[22] 林麗娟,「X 光繞射原理及其應用」,工業材料,86,100-109,
2000
[23] 王國強,「以反應式脈衝直流磁控濺鍍法通入 C2H2 反應氣體製備
AZO 薄膜的光電特性之研究」,國立中興大學,碩士論文
[24] C. Y. Tsai, J. D. Lai, S. W. Feng, “Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications,” Beilstein Journal of Nanotechnology, 8, 1939-1945(2017)
[25] Zhang, Haitao, Chen, Jianyuan, Cherng, Jyhshiarn , “The c-axis orientation ZnO by ICP enhanced HiPIMS at ambient temperature” , Journal of Crystal Growth, 453, 138-142 (2016)
[26] 許哲隆,「以氮化鎵為基板之表面聲波元件之研製」,國立中央大學,碩士論文
[27] 金開聖,「氧化鋅薄膜分析與發光二極體元件製作」 ,中華技術學院 , 碩士論文
[28] H. J. Ko, M. S. Han, Y. S. Park, “Improvement of the quality of ZnO substrates by annealing,” Journal of Crystal Growth, 269(2-4), 493-498 (2004).
[29] H. W. Kim, S. H. Shim, C. Lee, ”Annealing Effects on GaN/ZnO/Si Structures Prepared by RF Magnetron Sputtering,” Recent Developments in Advance Materials and Processes, 518, 137-142 (2006)
[30] J. Chen, S. M. Zhang, B. S. Chang, ”Influence of growth pressure of a GaN buffer layer on the properties of MOCVD GaN,” Science in China Series E-Technological Science, 46(6), 620-626 (2003)
[31] Piotr Caban, Wlodek Strupinski, Jan Szmidt, ”Effect of growth pressure on coalescence thickness and crystal quality of GaN deposited on 4H–SiC,” Journal of Crystal Growth, 315(1), 168-173 (2011)
[32] W. K. Wang, M. C. Jiang, ”Growth behavior of hexagonal GaN on Si(100) and Si(111) substrates prepared by pulsed laser deposition,” Japanese Journal of Applied Physics, 55(9), 095503 (2016)
[33] P. K. Song, E. Yoshida, Y. Sato, “GaN Films Deposited by DC Reactive Magnetron Sputtering,” Japanese Journal of Applied Physics, 43(2A), L164-L166 (2004)
[34] R. V. Stuart , Vacuum Technology, Thin Films, and Sputtering: An Introduction , (1983)