| 研究生: |
鍾佺翰 Chuan-Han Chung |
|---|---|
| 論文名稱: |
非厄米特二階拓樸電路之研究 The Research of Non-Hermitian Second-Order Topological Electric Circuits |
| 指導教授: | 欒丕綱 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 非厄米特 、二階拓樸 、角態 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討二維二階非厄米特拓樸絕緣體 (second-order topological insulator) 的物理特性。我們分別考慮方形晶格與可果美晶格兩種晶格型態,然後以電路的方式實現此拓樸絕緣體,並觀察零維的角態 (corner states) 與一維的非無能隙邊緣態 (non-gapless edge states) 如何形成。此電路系統可利用克希荷夫電路定律 (Kirchhoff's circuit laws) 分別針對完全週期性的晶格 (periodic lattice) 結構與具有開放邊界 (open boundaries) 的有限週期結構兩種情況推導出電路拉普拉斯算符 (Circuit Laplacian) 與哈密頓矩陣 (Hamiltonian matrix),並解出後者的本徵值與本徵向量。其中本徵向量給出此系統的本徵振盪模態 (modes),而本徵值就是模態的 (複數) 振動頻率。分別考慮方形晶格與可果美晶格的拓樸不變量 (topological invariant),就可以在這兩種晶格結構中區分不同的二階拓樸相,以確認角態的存在。
In the thesis, we mainly discuss the physical properties of two-dimensional second-order non-Hermitian topological insulators. Structures of square lattice and Kagome lattice are considered, and the topological insulators are realized by means of appropriately defined electric circuits with the corresponding lattice structures. The study focuses on the zero-dimensional corner states instead of the one-dimensional non-gapless edge states.
We use Kirchhoff's circuit laws to derive the circuit Laplacian and Hamiltonian of the circuits for both the periodic lattice structure without boundary and the finite periodic structure with open boundaries. The circuit Hamiltonian matrix is used to solve for the eigenmodes/eigenstates of the system and their corresponding (complex valued) eigenfrequencies.
Different topological phases can be distinguished by the topological invariants defined according to the band structures of the system, and the existence of the corner states can be confirmed by checking the topological invariants.
[1] Klitzing, K.v., G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Physical Review Letters, 45, 494 (1980)
[2] Thouless, D.J., et al., Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Physical Review Letters, 49, 405 (1982)
[3] 蔡雅雯、吳杰倫、欒丕綱, 從量子霍爾效應到拓樸光子學與拓樸聲子學, 科儀新知, 211期, 68 (2017).
[4] Haldane, F.D.M., Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the" parity anomaly", Physical Review Letters, 61, 2015 (1988)
[5] C.L. Kane, and E.J. Mele, Quantum Spin Hall Effect in Graphene, Physical Review Letters 95, 226801 (2005)
[6] C. L. Kane and E. J. Mele, Z2 Topological Order and the Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802 – Published 28 September 2005
[7] F. D. M. Haldane & S. Raghu, Possible Realization of Directional Optical Waveguides in Photonic Crystalswith Broken Time-Reversal Symmetry, Physical Review Letters, 100, 013904 (2008)
[8] T. E. Lee, Anomalous edge state in a non-Hermitian lattice, Phys. Rev. Lett. 116, 133903 (2016)
[9] Y. Xiong, Why does bulk boundary correspondence fail in some non-Hermitian topological models, J. Phys. Commun. 2, 035043 (2018)
[10] I. Rotter, A non-Hermitian Hamilton operator and the physics of open quantum systems, J. Phys. A 42, 153001 (2009)
[11] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Beam Dynamics in PT Symmetric Optical Lattices, Phys. Rev. Lett. 100, 103904 (2008).
[12] S. Longhi, Bloch Oscillations in Complex Crystals with PT Symmetry, Phys. Rev. Lett. 103, 123601 (2009).
[13] L. Lu, J. D. Joannopoulos, and M. Soljacic, Topological photonics, Nat. Photonics 8, 821 (2014)
[14] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, NonHermitian physics and pt symmetry, Nat. Phys. 14, 11 (2018)
[15] Ramy El-Ganainy, Konstantinos G. Makris, Mercedeh Khajavikhan, Ziad H. Musslimani, Stefan Rotter & Demetrios N. Christodoulides, Non-Hermitian physics and PT symmetry, Nature Physics volume 14, pages11–19 (2018)
[16] Mohammad-Ali Miri, Andrea Alù, Exceptional points in optics and photonics, SCIENCE Vol 363, Issue 6422 (2019)
[17] Schindler, J., Li, A., Zheng, M. C., Ellis, F. M. & Kottos, T. Experimental study
of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101 (2011)
[18] Bittner, S. et al. PT symmetry and spontaneous symmetry breaking in a
microwave billiard. Phys. Rev. Lett. 108, 024101 (2012).
[19] Fleury, R., Sounas, D. & Alù, A. An invisible acoustic sensor based on
parity-time symmetry. Nat. Commun. 6, 5905 (2015)
[20] Hang, C., Huang, G. & Konotop, V. V. PT symmetry with a system of
three-level atoms. Phys. Rev. Lett. 110, 083604 (2013)
[21] Asbóth, János K., Oroszlány, László, Pályi, András, A Short Course on Topological Insulators (Springer, Lecture Note in Physics, 2016)
[22] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88, 035005 (2016)
[23] Shunyu Yao, Zhong Wang, Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121, 086803 (2018)
[24] Kazuki Yokomizo and Shuichi Murakami, Non-Bloch Band Theory of Non-Hermitian Systems, Phys. Rev. Lett. 123, 066404 (2019)
[25] Ken-Ichiro Imura, Yositake Takane, Generalized Bloch band theory for non-Hermitian bulk-boundary correspondence, arXiv:2004.14772
[26] Naomichi Hatano and David R. Nelson, Localization Transitions in Non-Hermitian Quantum Mechanics, Phys. Rev. Lett. 77, 570 (1996)
[27] Naomichi Hatano and David R. Nelson, Vortex pinning and non-Hermitian quantum mechanics, Phys. Rev. B 56, 8651 (1997)
[28] Ken-Ichiro Imura and Yositake Takane, Generalized bulk-edge correspondence for non-Hermitian topological systems, Phys. Rev. B 100, 165430 (2019)
[29] Stefan Imhof, Christian Berger, Florian Bayer, Johannes Brehm, Laurens W. Molenkamp, Tobias Kiessling, Frank Schindler, Ching Hua Lee, Martin Greiter, Titus Neupert & Ronny Thomale, Topolectrical-circuit realization of topological corner modes, Nature Physics volume 14, pages925–929 (2018)
[30] Junkai Dong, Vladimir Juričić, and Bitan Roy, Topolectric circuits: Theory and construction, Phys. Rev. Research 3, 023056 (2021)
[31] Ching Hua Lee, Stefan Imhof, Christian Berger, Florian Bayer, Johannes Brehm, Laurens W. Molenkamp, Tobias Kiessling & Ronny Thomale, Topolectrical Circuits, Communications Physics volume 1, Article number: 39 (2018)
[32] Motohiko Ezawa, Non-Hermitian higher-order topological states in nonreciprocal and reciprocal systems with their electric-circuit realization, Phys. Rev. B 99, 201411(R) (2019)
[33] Jien Wu, Xueqin Huang, Yating Yang, Weiyin Deng, Jiuyang Lu, Wenji Deng, and Zhengyou Liu, Non-Hermitian second-order topology induced by resistances in electric circuits, Phys. Rev. B 105, 195127 (2022)
[34] Jien Wu, Xueqin Huang, Jiuyang Lu, Ying Wu, Weiyin Deng, Feng Li, and Zhengyou Liu, Observation of corner states in second-order topological electric circuits, Phys. Rev. B 102, 104109 (2020)
[35] Bi-Ye Xie, Hong-Fei Wang, Hai-Xiao Wang, Xue-Yi Zhu, Jian-Hua Jiang, Ming-Hui Lu, and Yan-Feng Chen, Second-order photonic topological insulator with corner states, Phys. Rev. B 98, 205147 (2018)
[36] Josias Langbehn, Yang Peng, Luka Trifunovic, Felix von Oppen, and Piet W. Brouwer, Reflection-Symmetric Second-Order Topological Insulators and Superconductors, Phys. Rev. Lett. 119, 246401 (2017)
[37] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, NonHermitian physics and pt symmetry, Nat. Phys. 14, 11 (2018)
[38] Motohiko Ezawa, Non-Hermitian boundary and interface states in nonreciprocal higher-order topological metals and electrical circuits, Phys. Rev. B 99, 121411(R) (2019)
[39] Motohiko Ezawa, Higher-Order Topological Insulators and Semimetals on the Breathing Kagome and Pyrochlore Lattices, Phys. Rev. Lett. 120, 026801 (2018)
[40] Motohiko Ezawa, Higher-order topological electric circuits and topological corner resonance on the breathing kagome and pyrochlore lattices, Phys. Rev. B 98, 201402(R) (2018)
[41] Xiancong Lu, Ying Chen, and Huanyang Chen, Orbital corner states on breathing kagome lattices, Phys. Rev. B 101, 195143 (2020)
[42] Hai-Xiao Wang, Chengpeng Liang, Yin Poo, Pi-Gang Luan and Guang-Yu Guo, The topological edge modes and Tamm modes in Su–Schrieffer–Heeger LC-resonator circuits, Journal of Physics D: Applied Physics, Volume 54, Number 43
[43] Huanhuan Yang, Z.-X. Li, Yuanyuan Liu, Yunshan Cao, and Peng Yan, Observation of symmetry-protected zero modes in topolectrical circuits, Phys. Rev. Research 2, 022028(R) (2020)
[44] Victor V. Albert, Leonid I. Glazman, and Liang Jiang, Topological Properties of Linear Circuit Lattices, Phys. Rev. Lett. 114, 173902 (2015)
[45] Jia Ningyuan, Clai Owens, Ariel Sommer, David Schuster, and Jonathan Simon, Time- and Site-Resolved Dynamics in a Topological Circuit, Phys. Rev. X 5, 021031 (2015)
[46] Tal Goren, Kirill Plekhanov, Félicien Appas, Karyn Le Hur, Topological Zak Phase in Strongly-Coupled LC Circuits, arXiv:1711.02034
[47] Tobias Helbig, Tobias Hofmann, Ching Hua Lee, Ronny Thomale, Stefan Imhof, Laurens W. Molenkamp, and Tobias Kiessling, Band structure engineering and reconstruction in electric circuit networks, Phys. Rev. B 99, 161114(R) (2019)
[48] Weiwei Zhu, Shanshan Hou, Yang Long, Hong Chen, and Jie Ren, Simulating quantum spin Hall effect in the topological Lieb lattice of a linear circuit network, Phys. Rev. B 97, 075310 (2018)
[49] Zhi-Qiang Zhang, Bing-Lan Wu, Juntao Song, and Hua Jiang, Topological Anderson insulator in electric circuits, Phys. Rev. B 100, 184202 (2019)