| 研究生: |
盧裕鵬 Yu-Pong Lu |
|---|---|
| 論文名稱: |
集集餘震之統計研究 |
| 指導教授: |
陳玉英
Yuh-Ing Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 餘震 、波氏過程 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文是分析規模M=7.3的集集地震發生之後,其餘震序列的時間與空間分布。在此視餘震之發生為服從波氏分布的點過程。本文先就餘震時間衰退模型、餘震規模頻率模型、與合併二者而得的餘震之時間-規模模型分別討論,並且說明模型中重要參數所反映的集集餘震特性。此外,利用空間密度區域 ( denisity-grid ),以移動視窗方法探討不同空間中,模型重要參數的變化。最後,據此變化,分別在不同空間中配適時間-規模模型,並且計算大規模餘震在不同時間範圍內發生之機率。結果可提供短期預測餘震之發生。
[1]徐明同 (1979)。地震學。台北市:黎明文化事業公司。
[2]劉淑鶯,單窈聘 (1994). 花蓮地區地震統計模型分析。中國統計
學報,32, 1-9。
[3]Aki, K. (1965). Maximum liklihood estimate of b in the
formula log N= a-bM and is confidence limits, Bull. Earthquake Res. Inst., Tokyo Univ. 43, 237-239.
[4]Bender, B. (1983). Maximum likelihood edtimation of b values for magnitude grouped data,
Bull. Seismol. Soc. Am., 73, 831-851.
[5]Cuo, Z. and Ogata, Y. (1997). Statistical relations between the parameters of aftershocks
in time, space and magnitude,
Journal of geophysical Research, 102, 2857-2873.
[6]Daley, D. J., and Vere-Jones, D. (1988). An Introduction to the theory of Point
Processes,
Springer New York.
[7]Gutenberg, R. and C. F. Richter (1944). Frequency of earthquakes in California,
Bull. Seismol. Soc. Am., 34, 185-188.
[8]Kisslinger, C. and L. M. Jones (1991). Properties of aftershock sequences in Southern
California, J. Geophys. Res., 96, B7, 11,947-11,958.
[9]Mogi, K. (1962). Magnitude-frequency relation for elastic shocks Accompanying
fractures of various materials and some related problems in earthquakes,
Bull. Earthquake Res. Inst., Univ. Tokyo, 40, 831-853.
[10]Ogata, Y. (1978). Asymption behavior of the maximum likelihood estimators for the stationsary
point processes, Ann. Inst. Statist. Math., 30, A, 243-261.
[11]Ogata, Y. (1983). Estimation of the parameters in the modified Omori formula for
aftershock frequencies by the maximum likelihood procedure,
J. Phys. Earth, 31, 115-124.
[12]Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis
for point processes, J. Amer. Statist. Assoc., 83 (401), 9-27.
[13]Rathbun, S. L. (1993). Modeling marked spatio-temporal point patterns,
Bulletine of the International Statistical Institute, 55, Book 2, 379-396.
[14]Rathbun, S. L. (1996). Asymptotic properties of the maximum likelihood estimator for
spatio-temporal point processes,
J. Statist. Plann. Inference, 51, Special issue on Spatial statistic,
Part II, 55-74.
[15]Reasenberg, P. A. and L. M. Jones (1990). California aftershock hazard forecast,
Science, 247, 345-346.
[16]Reasenberg, P. A. and L. M. Jones (1994). Earthquake aftershocks: Update,
Science, 265, 1251-1252.
[17]Shi, Y. and B. A. Bolt (1982). The standard error of the magnitude-frequency b
value, Bull. Seismol. Soc. Am., 72, 1677-1687.
[18]Utsu, T. (1965). A method for determining the value of b in formula log N= a-bM
showing the magnitude-frequency relation for earthquakes,
Geophys, Bull. Hokkaido Univ. 13, 99-103.
[19]Weichert, D. H. (1980). Estimation of earthquake recurrence parameters for unequal
observation periods for different magnitudes, Bull. Swism. Soc. Am., 70,
1337-1346.
[20]Wiemer, S. and M. Wyss (1997). Mapping the frequency-magnitude distribution in
acperities: An improved technique to calculate recurrence time?
Journal of Geophysical research, Vol. 102, No. B7, pages 15,115-15,128.
[21]Wiemer, S. and K. Katsumata (1999). Spatial variablity of seismicity parameters
in aftershock zones, J. Geophs. Res., 104, B6, 13,135-13,151.