跳到主要內容

簡易檢索 / 詳目顯示

研究生: 盧裕鵬
Yu-Pong Lu
論文名稱: 集集餘震之統計研究
指導教授: 陳玉英
Yuh-Ing Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 88
語文別: 中文
論文頁數: 34
中文關鍵詞: 餘震波氏過程
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文是分析規模M=7.3的集集地震發生之後,其餘震序列的時間與空間分布。在此視餘震之發生為服從波氏分布的點過程。本文先就餘震時間衰退模型、餘震規模頻率模型、與合併二者而得的餘震之時間-規模模型分別討論,並且說明模型中重要參數所反映的集集餘震特性。此外,利用空間密度區域 ( denisity-grid ),以移動視窗方法探討不同空間中,模型重要參數的變化。最後,據此變化,分別在不同空間中配適時間-規模模型,並且計算大規模餘震在不同時間範圍內發生之機率。結果可提供短期預測餘震之發生。


    目錄 表目錄 II 圖目錄 III 第一章 緒論 1 第二章 地震相關知識和文獻回顧 3 2.1 地震的相關知識 3 2.2 文獻回顧 5 第三章 參數之估計 7 3.1 修正 Omori 模式 7 3.2 Gutenberg-Richter 模式 9 3.3 Reasenberg and Jones 模式 10 第四章 集集餘震序列模型配適 11 4.1 時間分布 11 4.2 規模-頻率關係 12 4.3 時間-規模分布 12 4.4 空間分布 14 第五章 結論 16 附錄一 圖表 17 附錄二 集集地震規模 5.0 以上之餘震資料 28 參考文獻 31

    [1]徐明同 (1979)。地震學。台北市:黎明文化事業公司。
    [2]劉淑鶯,單窈聘 (1994). 花蓮地區地震統計模型分析。中國統計
    學報,32, 1-9。
    [3]Aki, K. (1965). Maximum liklihood estimate of b in the
    formula log N= a-bM and is confidence limits, Bull. Earthquake Res. Inst., Tokyo Univ. 43, 237-239.
    [4]Bender, B. (1983). Maximum likelihood edtimation of b values for magnitude grouped data,
    Bull. Seismol. Soc. Am., 73, 831-851.
    [5]Cuo, Z. and Ogata, Y. (1997). Statistical relations between the parameters of aftershocks
    in time, space and magnitude,
    Journal of geophysical Research, 102, 2857-2873.
    [6]Daley, D. J., and Vere-Jones, D. (1988). An Introduction to the theory of Point
    Processes,
    Springer New York.
    [7]Gutenberg, R. and C. F. Richter (1944). Frequency of earthquakes in California,
    Bull. Seismol. Soc. Am., 34, 185-188.
    [8]Kisslinger, C. and L. M. Jones (1991). Properties of aftershock sequences in Southern
    California, J. Geophys. Res., 96, B7, 11,947-11,958.
    [9]Mogi, K. (1962). Magnitude-frequency relation for elastic shocks Accompanying
    fractures of various materials and some related problems in earthquakes,
    Bull. Earthquake Res. Inst., Univ. Tokyo, 40, 831-853.
    [10]Ogata, Y. (1978). Asymption behavior of the maximum likelihood estimators for the stationsary
    point processes, Ann. Inst. Statist. Math., 30, A, 243-261.
    [11]Ogata, Y. (1983). Estimation of the parameters in the modified Omori formula for
    aftershock frequencies by the maximum likelihood procedure,
    J. Phys. Earth, 31, 115-124.
    [12]Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis
    for point processes, J. Amer. Statist. Assoc., 83 (401), 9-27.
    [13]Rathbun, S. L. (1993). Modeling marked spatio-temporal point patterns,
    Bulletine of the International Statistical Institute, 55, Book 2, 379-396.
    [14]Rathbun, S. L. (1996). Asymptotic properties of the maximum likelihood estimator for
    spatio-temporal point processes,
    J. Statist. Plann. Inference, 51, Special issue on Spatial statistic,
    Part II, 55-74.
    [15]Reasenberg, P. A. and L. M. Jones (1990). California aftershock hazard forecast,
    Science, 247, 345-346.
    [16]Reasenberg, P. A. and L. M. Jones (1994). Earthquake aftershocks: Update,
    Science, 265, 1251-1252.
    [17]Shi, Y. and B. A. Bolt (1982). The standard error of the magnitude-frequency b
    value, Bull. Seismol. Soc. Am., 72, 1677-1687.
    [18]Utsu, T. (1965). A method for determining the value of b in formula log N= a-bM
    showing the magnitude-frequency relation for earthquakes,
    Geophys, Bull. Hokkaido Univ. 13, 99-103.
    [19]Weichert, D. H. (1980). Estimation of earthquake recurrence parameters for unequal
    observation periods for different magnitudes, Bull. Swism. Soc. Am., 70,
    1337-1346.
    [20]Wiemer, S. and M. Wyss (1997). Mapping the frequency-magnitude distribution in
    acperities: An improved technique to calculate recurrence time?
    Journal of Geophysical research, Vol. 102, No. B7, pages 15,115-15,128.
    [21]Wiemer, S. and K. Katsumata (1999). Spatial variablity of seismicity parameters
    in aftershock zones, J. Geophs. Res., 104, B6, 13,135-13,151.

    QR CODE
    :::