跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳志瑋
Zhi-Wei Chen
論文名稱: 調控鎳奈米微粒粉末的磁化強度
指導教授: 李文献
Wen-Hsien Li
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 94
語文別: 中文
論文頁數: 78
中文關鍵詞: 奈米微粒磁化強度
外文關鍵詞: magnetization, nanoparticle, Ni
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了觀察鎳奈米微粒間交互作用對其磁特性的影響,我們對樣品做壓合的動作,以調控微粒間的距離,而聚合密度(CD)的範圍大約從1 %到70 %。在實驗中我們觀察到了兩個現象,首先在8 nm及9 nm的鎳奈米微粒中,由樣品的飽和磁化強度(Ms)值與CD間的關係圖中,我們看到了Ms隨著CD增加而增加,到了某個CD值會開始減弱,此現象主要來自於微粒間的交互作用,而此交互作用的形式是磁偶極間交互作用。第二個現象是樣品的磁滯曲線與Langevin function的擬合曲線會有一段差異產生,此現象只在低溫下發生,而且在不同CD下皆有。我們推測這個差異發生的原因可能與微粒間交互作用、熱能量、各向異性及微粒磁矩分佈有關。


    In studying the influence of interparticle interaction on the magnetic characters of Ni nanoparticle. We controled the distance among particles by means of pressing the very loosely packed nanoparticle powder samples, characterized by the compacting density (CD) of the samples that ranging from 1 % to 70 % of the density of bulk Ni. Two main phenomena were observed. First, the saturation magnetization (Ms) of the sample increases as CD is increased up to a certain CD value, it then decreasing with the further increasing of CD. This behavior mainly associated with the interparticle interactions, which may take the form of magnetic dipole-dipole interaction. Second, there are noticeable deviations between the hysteresis curve and the Langevin behavior. The deviations only were cleanly revealed at low temperatures. The interparticle interaction, thermal energy, anisotropy, and size distribution can all be responsible for the occurrence of non-Langevin behavior.

    目錄 摘要……………………………………………………………………Ⅰ Abstract…………………………………………………………………Ⅱ 致謝……………………………………………………………………Ⅲ 目錄……………………………………………………………………Ⅳ 圖目……………………………………………………………………Ⅵ 表目………………………………………………………………Ⅸ 第一章 研究鎳奈米微粒的目的………………………………………1 1-1 鎳的物理性質………………………………………………1 1-2 奈米磁性材料的應用…………………………………………2 1-3 實驗動機………………………………………………………5 第二章 樣品備製與量測………………………………………………6 2-1 鎳奈米微粒的備製……………………………………………6 2-2 粒徑分析………………………………………………………8 2-3 磁化率實驗裝置與壓合模具………………………………16 第三章 磁性理論……………………………………………………20 3-1 超順磁性……………………………………………………20 3-2 磁滯曲線……………………………………………………23 3-3 朗之萬順磁理論……………………………………………26 第四章 實驗數據分析……………………………………………30 4-1 聚合密度與微粒平均間距…………………………………30 4-2 磁滯曲線與理論擬合………………………………………34 4-3 鎳奈米微粒的磁特性………………………………………48 4-4 微粒間交互作用對其飽和磁化強度的影響………………52 4-5 實驗與朗之萬函數曲線的差異…………………………58 第五章 結論…………………………………………………………62 參考資料………………………………………………………………64

    參考資料
    [1] C.Kittel 原著,洪連輝、劉立基、魏榮君編譯,固態物理學導論,第七版
    [2] 龔建華,你不可不知的奈米科技,世茂出版社
    [3] 尹邦躍、張勁燕,奈米時代,五南出版社
    [4] 蕭詠銜,鎳奈米微粒間交互作用對磁特性的影響,中央大學碩士論文
    [5] 陳正雍,奈米金粉粒的原子結構及吸收光譜與粒徑關係探討,中央大學碩士論文
    [6] 許樹恩、吳泰伯,X光繞射原理與材料結構分析,國科會精儀中心
    [7] 馮端主編,固態物理學大辭典,建宏出版社(1998)
    [8] Nicola A. Spaldin,MAGNETIC MATERIALS
    [9] B.D. Cullity, Introduction to Magnetic Materials(University of Notre Dame)(1984)
    [10] C.P. Bean and I.S. Jacobs. Magnetic granulometry and
    super-paramagnetism. J. Appl. Phys., 27 1448, 1956.
    [11] Rado, George T., and Suhl, Harry, eds., Magnetism, Vol. III, pp. 271-350, (New York and London:Academic Press)
    [12] Neil W. Ashcroft and N. David Mermin, Solid State Physics (Cornell University)
    [13] D.K. Kim et al., J. Magn. Magn. Mater. 225(2001)30.
    [14] R. H. Kodama, S. A. Makhlouf, and A. E. Berkowitz, Phys. Rev. Lett. 79, 1393 (1997)
    [15] Xavier Batlle and Amilcar Labarta, Journal of Physics D: Applied Physics, 35 R15-R42 (2002)
    [16] J. Dai, J. Q. Wang, C.Sangregorio, J. Appl. Phy. 87, 10(2000)
    [17] Neil W. Ashcroft and N. David Mermin, Solid State Physics, p. 673. (Cornell University)
    [18] M. El-Hilo, R. W. Chantrell, and K. O’Grady, J. Appl. Phys. 84, 5114 (1998)
    [19] R. W. Chantrell, N. Walmsley, J. Gore, and M. Maylin, Phys. Rev. B 63, 024410 (2000)
    [20] F. Wiekhorst, E. Shevchenko, H. Weller, and J. Kotzler, Phys. Rev. B 67, 224416 (2003)
    [21] N. J. O. Silva, V. S. Amaral, and L. D. Carlos, Phys. Rev. B 71, 184408 (2005)
    [22] Nicola A. Spaldin,MAGNETIC MATERIALS, p. 77

    QR CODE
    :::