跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林恒軒
Heng-Xuan Lin
論文名稱: 基於壓縮感知的SWIR與MWIR同步單像素相機及封裝後LED晶片的溫度分佈分析
Compressive Sensing-Based SWIR and MWIR Synchronized Single-Pixel Camera and Temperature Distribution Analysis of Packaged LED Chips
指導教授: 鍾德元
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 57
中文關鍵詞: 短波紅外中波紅外單像素成像壓縮感知
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出了一種基於壓縮感知的SWIR與MWIR同步單像素相機。系統採用Walsh-Hadamard矩陣生成解析度為64×64的採樣圖案,結合正負調製與Lock-in技術,有效提升訊噪比。SWIR訊號由SWIR偵測器進行偵測,MWIR訊號則透過由InAsSb偵測器和自製轉阻放大器組成的MWIR偵測器進行偵測。最後成功實現了對封裝後LED晶片的SWIR與MWIR同步溫度分佈分析。


    This study proposes a SWIR and MWIR simultaneous single-pixel camera based on compressed sensing. The system employs a Walsh-Hadamard matrix to generate sampling patterns with a resolution of 64×64, combined with positive and negative modulation and lock-in techniques to effectively enhance the signal-to-noise ratio. SWIR signals are detected using a SWIR detector, while MWIR signals are captured using an MWIR detector composed of an InAsSb detector and a custom transimpedance amplifier. Finally, the system successfully achieves simultaneous SWIR and MWIR temperature distribution analysis of packaged LED chips.

    中文摘要 V ABSTRACT VI 致謝 VII 目錄 VIII 圖目錄 X 第一章 緒論 1 1.1簡介 1 1.2文獻回顧 1 1.3研究動機 4 第二章 背景知識 6 2.1 PLANCK’S LAW 6 2.2 KIRCHHOFF'S LAW OF THERMAL RADIATION 6 2.3 INGAN/GAN LED的結構與吸收光譜 7 2.4 單像素成像(SINGLE PIXEL IMAGING, SPI) 8 2.5壓縮感知(COMPRESSIVE SENSING, CS) 9 2.5.1 自然影像的稀疏性 9 2.5.2 壓縮感知單像素成像 10 2.6 LOCK-IN 11 2.7轉阻放大器(TRANSIMPEDANCE AMPLIFIER, TIA) 12 第三章 樣品製作 17 3.1 實驗樣品 17 3.1.1 InGaN/GaN 藍光LED與submount 17 3.1.2 電烙鐵 18 3.1.3 散熱膏 19 3.1.4 石墨噴漆 19 3.1.5 矽橡膠 20 3.1.6 攪拌加熱板(Stirring Hot Plates) 20 第四章 實驗架構 21 4.1 光學架構 21 4.2 電路與訊號傳輸架構 26 4.3 程式架構 31 4.3.1 DMD的採樣矩陣與播放參數 31 4.3.2 Labview的顯示採樣圖案與擷取電壓訊號的狀態機(state machine) 33 4.3.3 MATLAB的影像重建 35 第五章 實驗結果 36 5.1 空間解析度量測 36 5.2 量測未封裝的LED晶片溫度分佈 37 5.3 量測封裝後的LED晶片溫度分佈 41 第六章 結論 43 參考文獻 44

    1. Narendran, N. and Y. Gu, Life of LED-Based White Light Sources. Journal of Display Technology, 2005. 1(1): p. 167-171.
    2. Hu, J., L. Yang, and M.W. Shin, Electrical, optical and thermal degradation of high power GaN/InGaN light-emitting diodes. Journal of Physics D: Applied Physics, 2008. 41(3).
    3. Efremov, A.A., et al., Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs. Semiconductors, 2006. 40(5): p. 605-610.
    4. Cahill, D.G. and R.O. Pohl, Lattice Vibrations and Heat Transport in Crystals and Glasses. Annual Review of Physical Chemistry, 1988. 39(1): p. 93-121.
    5. Lin, Y.-C., et al., LED and Optical Device Packaging and Materials, in Materials for Advanced Packaging, D. Lu and C.P. Wong, Editors. 2009, Springer US: Boston, MA. p. 629-680.
    6. Stockman, S.A., et al., Junction temperature in light-emitting diodes assessed by different methods, in Light-Emitting Diodes: Research, Manufacturing, and Applications IX. 2005.
    7. Xi, Y., et al., Junction Temperature in Ultraviolet Light-Emitting Diodes. Japanese Journal of Applied Physics, 2005. 44(10R).
    8. Han, D., et al., Effect of temperature distribution and current crowding on the performance of lateral GaN‐based light‐emitting diodes. physica status solidi c, 2010. 7(7-8): p. 2133-2135.
    9. Lisik, Z., E. Raj, and J. Podgórski, Numerical Model of Current Flow and Thermal Phenomena in Lateral GaN/InGaN LEDs. Electronics, 2021. 10(24).
    10. Fang, Y., et al. Recognition Algorithm of Silicone Rubber Based on Infrared Spectrum. in 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). 2020.
    11. Hsu, Y.-S. and T.-Y. Chung, Single-pixel MWIR camera for acquiring thermal images of silicone rubber encapsulated LEDs. Optics and Lasers in Engineering, 2023. 161: p. 107343.
    12. Cai, D., et al., Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials. Journal of Molecular Structure, 2010. 976(1-3): p. 274-281.
    13. Sen, P., et al., Dual photography. ACM Trans. Graph., 2005. 24(3): p. 745–755.
    14. Candès, E. and T. Tao, Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? IEEE Transactions on Information Theory, 2006. 52: p. 5406-5425.
    15. Candès, E. and J. Romberg, Sparsity and incoherence in compressive sampling. Inverse Problems, 2007. 23(3): p. 969.
    16. Duarte, M., et al., Single-Pixel Imaging via Compressive Sampling. Signal Processing Magazine, IEEE, 2008. 25: p. 83-91.
    17. Radwell, N., et al., Single-pixel infrared and visible microscope. Optica, 2014. 1(5).
    18. Edgar, M.P., et al., Simultaneous real-time visible and infrared video with single-pixel detectors. Sci Rep, 2015. 5: p. 10669.
    19. Gibson, G.M., et al., Real-time imaging of methane gas leaks using a single-pixel camera. Opt Express, 2017. 25(4): p. 2998-3005.
    20. Ebner, A., et al., Diffraction-limited hyperspectral mid-infrared single-pixel microscopy. Scientific Reports, 2023. 13(1): p. 281.
    21. Travinsky, A., et al., Evaluation of Digital Micromirror Devices for use in space-based Multi-Object Spectrometer application. Journal of Astronomical Telescopes, Instruments, and Systems, 2017. 3.
    22. Wang, Y., et al., Mid-infrared single-pixel imaging at the single-photon level. Nat Commun, 2023. 14(1): p. 1073.
    23. Zhang, Z., et al., Hadamard single-pixel imaging versus Fourier single-pixel imaging. Opt Express, 2017. 25(16): p. 19619-19639.
    24. Shi, D., et al., Enhancing resolution of single-pixel imaging system. Optical Review, 2015. 22(5): p. 802-808.
    25. Sun, M.J., et al., Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning. Opt Express, 2016. 24(10): p. 10476-85.
    26. Mahalanobis, A., et al., Recent results of medium wave infrared compressive sensing. Appl Opt, 2014. 53(34): p. 8060-70.
    27. Hansen, M.P., et al., Overview of SWIR detectors, cameras, and applications, in Thermosense XXX. 2008.
    28. Andresen, B.F., et al., Military reconnaissance platform for the spectral range from the visible to the MWIR, in Infrared Technology and Applications XLIII. 2017.
    29. Scutelnic, D., et al., Thermal endoscope based on cost-effective LWIR camera cores. HardwareX, 2022. 11: p. e00300.
    30. Polyanskiy, M.N., Refractiveindex.info database of optical constants. Sci Data, 2024. 11(1): p. 94.
    31. Lü, Y., et al., Ambient temperature-independent dual-band mid-infrared radiation thermometry. Applied Optics, 2016. 55(9): p. 2169-2174.
    32. Wu, Z. and X. Wang, Focal plane array-based compressive imaging in medium wave infrared: modeling, implementation, and challenges. Appl Opt, 2019. 58(31): p. 8433-8441.
    33. Marr, J.M. and F.P. Wilkin, A better presentation of Planck’s radiation law. American Journal of Physics, 2012. 80(5): p. 399-405.
    34. Robitaille, P.-M., Kirchhoff’s law of thermal emission: 150 years. Progr. Phys, 2009. 4: p. 3-13.
    35. Muley, S.V. and N.M. Ravindra, Emissivity of Electronic Materials, Coatings, and Structures. Jom, 2014. 66(4): p. 616-636.
    36. Kazazis, S.A., E. Papadomanolaki, and E. Iliopoulos, Polarization-Engineered InGaN/GaN Solar Cells: Realistic Expectations for Single Heterojunctions. IEEE Journal of Photovoltaics, 2018. 8(1): p. 118-124.
    37. Kucharski, R., et al., Transparency of Semi-Insulating, n-Type, and p-Type Ammonothermal GaN Substrates in the Near-Infrared, Mid-Infrared, and THz Spectral Range. Crystals, 2017. 7(7).
    38. Sun, X., et al., Short-wavelength light beam in situ monitoring growth of InGaN/GaN green LEDs by MOCVD. Nanoscale Res Lett, 2012. 7(1): p. 282.
    39. Khayam, S.A., The discrete cosine transform (DCT): theory and application. Michigan State University, 2003. 114(1): p. 31.
    40. Candès, E.J., The restricted isometry property and its implications for compressed sensing. Comptes Rendus. Mathématique, 2008. 346(9-10): p. 589-592.
    41. Amplifier, D.L.-I., MODEL SR830. Interface, 1993. 4: p. 24.
    42. GmbH, P.G.O. Alkali-free alkaline earth boro-alumino-silicate glass. 2024; Available from: https://www.pgo-online.com/intl/eagle-xg.html.
    43. Jayathilake, A., A. Perera, and M. Chamikara, Discrete Walsh-Hadamard transform in signal processing. IJRIT Int. J. Res. Inf. Technol, 2013. 1: p. 80-89.
    44. Yu, W.-K., et al., Compressive microscopic imaging with “positive–negative” light modulation. Optics Communications, 2016. 371: p. 105-111.

    QR CODE
    :::