跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊博智
Po-Chih Yang
論文名稱: 絕緣體上鈮酸鋰薄膜光電元件製程開發與應用 - 電光調製器
Fabrication and application of Lithium Niobate on Insulator optoelectronic device - Electro-Optic Modulators
指導教授: 陳彥宏
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 123
中文關鍵詞: 鈮酸鋰麥克森調製器波導電光效應非線性效應電光調製器薄膜鈮酸鋰
外文關鍵詞: Lithium Niobate, Electro-Optic Modulator, Electro-Optic effect, waveguide, non-linear effect, LNOI, TFLN
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜鈮酸鋰 (TFLN) 調製器有望成為實現下一代光通信系統所需的超寬調
    製帶寬的理想元件,自從光纖通信出現以來,鈮酸鋰(LN)一直是電光調製器最
    好的材料。然而,傳統的 LN 調製器體積龐大、價格昂貴且耗電,無法滿足需求。
    製作在晶片上的 TFLN 調製器可以解決這個問題,但在 TFLN 中製造低損耗元
    件不是一件簡單的事。在這裡,我們成功製作了 LN 電光調製器,該調製器比傳
    統的塊狀 LN 元件小很多且效率更高,同時保留了 LN 的優異材料特性。在量子
    領域,我們可以透過鈮酸鋰優異的電光效應,減少製程誤差對量子邏輯閘造成的
    影響,甚至可以搭配其他 LN 製程,製造量子光源,並將光源與邏輯閘整合至單
    晶片上,實現 System On Chip 的理想。
    本實驗根據不同的鈮酸鋰波導備置方法進行系統性測試,並嘗試將其改良成
    本實驗室製程設備允許的條件,以利本實驗室自行製作低損耗的 LNOI 波導。在
    元件方面,我們以 I-line 曝光機、PECVD、ICP-RIE、離子佈植機、PVD 等半導
    體相關技術,製造直波導以及帶有電極的 Mach–Zehnder Modulator (MZM),製作
    不同寬度之直波導,分別對其進行量測,在直波導的製作基礎下,利用鈮酸鋰的
    優異電光效應製作電光調製器,並將其應用在 MZM 上。
    波導製程方面,分為兩部份,第一部份是利用 ICP-RIE,以 Argon 離子進行
    物理性蝕刻的 Ion Etching,第二部份是利用離子佈植的 IBEE(Ion-beam enhanced
    etching)。其中,我們以 IBEE 製程成功在鈮酸鋰薄膜上製作出寬度 1~3um,蝕刻
    深度 380nm,蝕刻側壁接近 90°,總長 0.5cm 的脊型波導,搭配端面拋光的技術,
    並以側邊耦光的方式,測量其模態及損耗,在 TM 偏振下,3、2、1.5um 波導的
    傳波損耗分別為 7.16dB/cm、6.76dB/cm、5.65dB/cm;在 TE 偏振下,3、2、1.5um
    波導的傳波損耗分別為 3.6dB/cm、7.87dB/cm、3.96dB/cm。
    另一方面,我們製作帶有電極的 MZM 結構,並對其單臂進行電光調製,調
    製臂長為 1mm 的調製器,測得其 Vπ 為 50V,對應的電壓長度乘積為 5V·cm。
    ii
    在未來,能夠將傳統的塊狀 LN 調製器以 TFLN 製作的電光調製器取代,能
    夠有效縮小元件尺寸,若搭配 CMOS 晶片驅動電壓,可作為光纖通訊裡的重要元
    件,因其優於矽基材料的特性,TFLN 具有更多優勢,有機會在 TFLN 上實現光
    量子邏輯閘及量子光源。


    Electro-optic modulators made of thin-film lithium niobate (TFLN) are expected
    to be ideal components for realizing the ultra-wide modulation bandwidth, which are
    required by next-generation optical communication systems. Since the invention of
    optical fiber communication, lithium niobate (LN) has always been the best material for
    electro-optic modulator. However, the traditional LN modulator is bulky, expensive and
    power-consuming, and cannot meet the demand. The TFLN modulator can solve this
    problem, but it is not easy to fabricate low-loss components on the TFLN substrate.
    Here, we have successfully fabricated a LN electro-optic modulator, which is much
    smaller and more efficient than the traditional bulk LN components, while preserving
    the excellent material properties of LN. In the quantum field, we can reduce the impact
    of process errors on quantum logic gates through the excellent electro-optical effect of
    lithium niobate, and even use other LN processes to assemble quantum light sources,
    integrate the light sources and logic gates on a single chip in order to achieve the ideal
    of System On Chip (SOC).
    This work carried out a systematic test based on different lithium niobate
    waveguide preparation methods and tried to improve it to the conditions allowed by our
    laboratory process equipment. Consequently, our laboratory can make low-loss LNOI
    waveguides by ourselves. About fabrication method, we use I-line stepper, PECVD,
    ICP-RIE, ion implanter, PVD and other semiconductor-related technologies to create
    straight waveguides and Mach-Zehnder Modulator (MZM) with electrodes. We
    produced different – width straight waveguides and measured them separately. After the
    straight – waveguide fabrication, an electro-optic modulator is made because of the
    excellent electro-optic effect of lithium niobite. This structure is used to create the MZM.
    The waveguide manufacturing process is divided into two parts. The first part is
    iv
    Ion Etching that uses ICP-RIE by Argon ions, and the second part is IBEE (Ion-beam
    enhanced etching) that uses ion implantation. We successfully used I-line stepper to
    fabricate ridge waveguides with the minimum width around 1um, etching depth reaches
    380nm, sidewall angle close to 90°, and total length of 0.5cm on the lithium niobate
    film by the IBEE process. This is more efficient than using e-beam lithography. After
    the end face polishing, we use edge coupling to measure the waveguide mode and
    propagation loss. Propagation losses of 3.9 dB/cm for TE and 6 dB/cm for TM
    polarization were measured at 1550 nm for a 5 mm long and 1.5µm wide waveguide
    using the Fabry-Perot method.
    In addition, we made an MZM structure with electrodes, and electro-optically
    modulate the light of single arm. The modulator with a modulating
    length of 1mm measured by the value of VπL ~5V·cm.
    In the future, the traditional bulk LN modulator can be replaced with an electrooptic modulator made of TFLN, which can effectively reduce the component size. If it
    is matched with the CMOS chip driving voltage, it can be used as an important
    component in optical fiber communication. Because of its superiority to silicon-based
    materials, TFLN has more advantages and could implement optical quantum logic gates
    and quantum light sources on TFLN.

    中文摘要……………………………………………………………………….i Abstract..............................................................................................iii 誌謝...........................................................................................v 目錄…………………………………………………..………………….vii 圖目錄……………………………………………………………………ix 表目錄……………………………………………………………….…..xv 第一章 緒論……………………………………………………………..1 1.1 積體光學歷史簡介……………………………………….......…………….1 1.2 電光調製器(Electro-Optic Modulator)..........................................................1 1.3 光波導材料....................................................................................................2 1.3.1 SOI........................................................................................................2 1.3.2 LN..........................................................................................................2 1.3.3 LNOI.....................................................................................................4 1.4 研究動機........................................................................................................5 1.5 內容概要........................................................................................................7 1.6 文獻會顧........................................................................................................8 第二章 實驗原理......................................................................................9 2.1 波導................................................................................................................9 2.2 電光效應(Electro–Optic effect)-Pockels effect.............................................9 2.3 麥克森調製器(Mach-Zehnder Modulator,MZM)...............................12 第三章 晶片設計及模擬結果................................................................19 3.1 LNOI基板...................................................................................................19 3.2 元件設計與模擬..........................................................................................21 第四章 元件製程製造............................................................................29 4.1 前段遮罩製作及實驗相關儀器..................................................................29 4.1.1 晶圓切割與前清理............................................................................29 4.1.2 薄膜沉積............................................................................................31 4.1.3 蝕刻....................................................................................................36 4.1.4 黃光微影............................................................................................43 4.1.5 離子佈植............................................................................................45 4.1.6 遮罩蝕刻參數....................................................................................48 4.2 鈮酸鋰波導與MZM製程..........................................................................55 4.2.1 Ion Etching..........................................................................................55 4.2.2 Ion Beam Enhance Etching.................................................................61 4.3 晶片清理與後段製程加工處理..................................................................71 4.3.1 晶片清理...................................................................................71 4.3.2 電極沉積...................................................................................74 4.3.3 端面拋光...................................................................................77 4.4 Ion Etching 製程改善........................................................................79 4.4.1 遮罩改善...................................................................................79 4.4.2 製程設備改善...........................................................................80 4.4.3 蝕刻參數改善...........................................................................81 4.4.4電極改善....................................................................................81 第五章 實驗結果與分析........................................................................83 5.1 量測架構......................................................................................................83 5.1.1 波導量測架構....................................................................................83 5.1.2 MZM量測架構..................................................................................85 5.2 實驗量測結果及分析..................................................................................88 5.2.1直波導量測結果及分析.....................................................................88 5.2.2 MZM量測結果..................................................................................92 第六章 實驗結果與分析........................................................................96 6.1 結論..............................................................................................................96 6.2 未來展望......................................................................................................96 第七章 參考文獻..................................................................................98

    [1] Rong Haisheng , Jones Richard , Liu Ansheng , Cohen Oded , Hak Dani , Fang
    Alexander , Paniccia Mario , “A continuous-wave Raman silicon laser.” , Nature, 433
    (7027) , p.725–728 , February 2005.
    [2] Chen, Roger, et al. "Nanophotonic integrated circuits from nanoresonators grown on
    silicon." Nature communications 50, p.4325. (2014).
    [3] Kaminow I, Ramaswamy V, Schmidt R, Turner E. “Lithium niobate ridge waveguide
    modulator.”, Applied Physics Letters. , 24(12) , p.622–624. , 1974.
    [4] G. K. Celler , Sorin Cristoloveanu , “Frontiers of silicon-on-insulator.”, Journal of Applied
    Physics 93, 4955 (2003)
    [5] B. T. Matthias and J. P. Remeika , “Ferroelectricity in the Ilmenite Structure.”, Phys. Rev.
    76, 1886 , December 1949
    [6] R. L. Byer , J. F. Young , F. S. Feigelson , “Growth of High-Quality LiNbO3 Crystals from
    the Congruent Melt”, J. Appl. Phys. , 41 , 2320 , (1970).
    [7] Volk Tatyana , Wohlecke Manfred , “Lithium Niobate: Defects, Photorefraction and
    Ferroelectric Switching.” , Springer. , 2008
    [8] Bazzan M. , Sada C. , “Optical waveguides in lithium niobate: recent developments and
    applications.” , Appl. Phys , Rev. 2 , 040603 (2015).
    [9] Hu X. P. , Xu P. , Zhu S. N. , “Engineered quasi-phase-matching for laser
    techniques.” , Photonics , Photonics Res. 1, 171–185 , (2013).
    [10] Wang T. X. , et al. , “Periodically poled LiNbO3 crystals from 1D and 2D to 3D.” , Sci.
    China Technol , Sci. 63 , 1110–1126 , (2020).
    [11] 胡塵滌 , “LNO/Si 異質晶圓接合與界面性質研究研究成果報告” , 行政院國家科學
    委員會專題研究計畫成果報告 , 2007
    [12] G. Poberaj , H. Hu , W. Sohler , P. Günter , “Lithium niobate on insulator (LNOI) for
    micro-photonic devices.” , Laser & Photonics Reviews , Volume 6 , Issue 4 , p. 488-503 ,
    (2012).
    [13] T.C.Ralph , N.K.Langford , T.B.Bell , A.G.White , “Linear optical controlled-NOT gate
    in the coincidence basis.” , Phys , Rev , A65 , 062324 , June 2002
    [14] QIAN ZHANG , MENG LI , YANG CHEN , XIFENG REN , ROBERTO OSELLAME ,
    QIHUANG GONG , AND YAN LI , “Femtosecond laser direct writing of an integrated
    path-encoded CNOT quantum gate.” , Optical Materials Express , 2318 , Vol. 9 , No. 5 ,
    May 2019
    [15] Peter O. Weigel , “High-Speed Hybrid Silicon-Lithium Niobate Electro-Optic Modulators
    & Related Technologies” , UNIVERSITY OF CALIFORNIA SANDIEGO , Doctor of
    Philosophy , 2018
    [16] Jintian Lin , Junxia Zhou , Rongbo Wu , Min Wang , Zhiwei Fang , Wei Chu , Jianhao
    Zhang , Lingling Qiao , Ya Cheng , “High-Precision Propagation-Loss Measurement of
    Single-Mode Optical Waveguides on Lithium Niobate on Insulator.” , Micromachines ,
    10(9) , 612 , 2019
    [17] Harvard school of Engineering , “Now entering , Lithium Niobate Valley.” , New & Event ,
    2017.
    [18] Zhang M. , Wang C. , Cheng R. , Shams-Ansari A. , Lončar, M. , “Monolithic ultrahigh-Q lithium niobate microring resonator.” , Optica , 4 , 1536-1537 , (2017).
    [19] Chen Zhihua , et al. , “Grating coupler on lithium niobate thin film waveguide with a
    metal bottom reflector.” , Optical Materials Express , 7.11 , p.4010-4017. , (2017).
    [20] Krasnokutska Inna , et al. , “Ultra-low loss photonic circuits in lithium niobate on
    insulator.” , Optics express , 26.2 , p. 897-904. , (2018).
    [21] Baghban Mohammad Amin , et al. , “Bragg gratings in thin-film LiNbO3
    waveguides.” Optics Express , 25.26 , p. 32323-32332. , (2017).
    [22] Dehui Sun , Yunwu Zhang , Dongzhou Wang , Wei Song , Xiaoyan Liu , Jinbo Pang ,
    Deqiang Geng , Yuanhua Sang , Hong Liu , “Microstructure and domain engineering of
    lithium niobate crystal films for integrated photonic applications. ”, Science &
    Applications , Science & Applications volume 9 , Article number: 197 , (2020)
    [23] Mohamed Mahmoud , Lutong Cai , Christian Bottenfield , Gianluca Piazza , “Lithium
    Niobate Electro-Optic Racetrack Modulator Etched in Y-Cut LNOI Platform.”, IEEE ,
    Volume:10 Issue:1 , 2018
    [24] Green William MJ , et al. , “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder
    modulator.” , Optics express , 15.25 , p.17106-17113. (2007).
    [25] Sasaki Hiroshi , Iain Anderson. , “Theoretical and experimental studies on active
    Yjunctions in optical waveguides.” , IEEE Journal of Quantum Electronics , 14.11 , p.883-
    892. , (1978).
    [26] Anderson Iain. , “Transmission performance of Y-junctions in planar dielectric
    waveguide.” IEE Journal on Microwaves , Optics and Acoustics 2.1 , p.7. , (1978).
    [27] Ulliac Gwenn , et al. , “Argon plasma inductively coupled plasma reactive ion etching
    study for smooth sidewall thin film lithium niobate waveguide application.” , Optical
    Materials , 53, (2016).
    [28] REINHARD GEISS , SINA SARAVI , ANTON SERGEYEV , SÉVERINE DIZIAIN ,
    FRANK SETZPFANDT , FRANK SCHREMPEL , RACHEL GRANGE , ERNSTBERNHARD KLEY , ANDREAS TÜNNERMANN , THOMAS PERTSCH ,
    “Fabrication of nanoscale lithium niobite waveguides for second-harmonic generation.”,
    Optics Letters , Vol. 40 , No. 12 , June 15 2015.
    [29] Ye Liu , Heng Li , Jia Liu , Su Tan , Qiaoyin Lu , Weihua Guo , “ Low Vπ thin-film lithium
    niobate modulator fabricated with photolithography.” , Optics Express , Vol. 29 , Issue 5 ,
    pp. 6320-6329 , (2021)
    [30] Han H , Xiang B , “Integrated electro-optic modulators in x-cut lithium niobate thin film” ,
    Optik , (2020).
    [31] J. W. Coburn , Harold F. Winters , “ Ion‐ and electron‐assisted gas‐surface chemistry—An
    important effect in plasma etching.” , Journal of Applied Physics , 50 , 3189 , (1979)
    [32] Lieberman Michael A. , Lichtenberg Allan J. , “Principles of plasma discharges and
    materials processing.” , (2nd ed.) , Hoboken, N.J. , 546., (2005)
    [33] USBC , “Cr etching” , UCSB Nanofabrication Facility.
    [34] Bill Mitchell , “Panasonic 2 Nanoscale ICP etching of SiO2 using ZEP (resist) mask.
    Recipe designed to provide vertical profiles with no trenching in nanoscale features.” ,
    UCSB Nanofabrication Facility.
    [35] Sipan Yang , Yaqian Li , Jinbin Xu , Min Wang , Liying Wu , Xueling Quan , Min Liu ,
    Liucheng Fu , Xiulan Cheng , “Low loss ridge-waveguide grating couplers in lithium
    niobate on insulator” , Optical Materials Express , Vol. 11 , Issue 5 , pp. 1366-1376 , (2021)
    [36] Schrempel, F., Gischkat, T., Hartung, H., Kley, E. B., & Wesch, W. , “Ion beam enhanced
    etching of LiNbO3.” , Nuclear Instruments and Methods in Physics Research Section B:
    Beam Interactions with Materials and Atoms, 250(1 -2), 164-168. (2006).
    [37] Geiss, R., Brandt, J., Hartung, H., Tünnermann, A., Pertsch, T., Kley, E. B., & Schrempel,
    F. , “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion
    beam-enhanced etching.” , Journal of Vacuum Science & Technology B, Nanotechnology
    and Microelectronics: Materials, Processing, Measurement, and Phenomena, 33(1),
    010601. (2015).
    [38] Wang, C., Zhang, M., Stern, B., Lipson, M., & Lončar, M. , “Nanophotonic lithium niobate
    electro-optic modulators.” , Optics express, 26(2), 1547-1555. (2018).
    [39] Regener, R., & Sohler, W. , “Loss in low-finesse Ti: LiNbO 3 optical waveguide
    resonators.” , Applied physics B, 36(3), 143-147. (1985)
    [40] Hu, H., Ricken, R., & Sohler, W. , “Lithium niobate photonic wires.” , Optics express,
    17(26), 24261-24268. (2009).
    [41] Krasnokutska, I., Tambasco, J. L. J., Li, X., & Peruzzo, A. , “Ultra-low loss photonic
    circuits in lithium niobate on insulator.” , Optics express, 26(2), 897-904. (2018).
    [42] Volk, M. F., Suntsov, S., Rüter, C. E., & Kip, D. , “Low loss ridge waveguides in lithium
    niobate thin films by optical grade diamond blade dicing.” , Optics express, 24(2), 1386-
    1391. (2016).
    [43] Wang, C., Zhang, M., Chen, X., Bertrand, M., Shams-Ansari, A., Chandrasekhar, S., ... &
    Lončar, M. , “Integrated lithium niobate electro-optic modulators operating at CMOScompatible voltages. “, Nature, 562(7725), 101-104. (2018)

    QR CODE
    :::