跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖致淵
jr-yuan Liao
論文名稱: 線上消費者再購行為之預測-以Yahoo!奇摩拍賣女裝上衣為例
Prediction of Online Consumers’ Repurchase Behavior onWomen’s Shirt at Yahoo! Auction Website
指導教授: 何靖遠
chin-yuan Ho
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理學系
Department of Information Management
畢業學年度: 100
語文別: 中文
論文頁數: 64
中文關鍵詞: 忠誠類型再購行為交易評價RFM模型網路購物
外文關鍵詞: Internet shopping, Loyalty type, Repurchase behavior, Rating, RFM model
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 獲取一位新顧客的成本是留住一位舊顧客的五倍;顧客再購率提高5%,企業的獲利可以提高25%-95%,企業必須要更專注在現有的顧客,才能以更具成本效益的方式增加獲利。由於網路購物的便利,消費者的選擇亦無時空的限制,若能有效地預測現有顧客的再購行為,無疑地將成為電子商務業者的競爭優勢。
    本研究以網頁內容探勘的方式蒐集線上拍賣網站所揭露的買賣雙方交易記錄,分析線上買家的忠誠類型,並建立一個綜合RFM、評價和忠誠類型的再購行為預測模型。本研究以“Yahoo!奇摩拍賣”平台2012年3月份女裝上衣有評價記錄的買家為基礎,蒐集這些線上消費者在2012年4月1日以前的交易資料,據以分析其忠誠的再購類型,以及這些買家在4月1日以後兩個月內的再購情形。邏輯斯迴歸分析結果顯示,最近一筆交易時間的間隔愈短、交易總次數愈高、累積交易金額愈大、平均交易金額愈低、最後一次交易給予的評價愈佳、賣家的累積評價排名愈高,和買家屬於單忠誠類型等,買家在一個月內再購的機率愈大。基於本研究所建立的預測模型可以有效地預測線上消費者的再購行為,對於網路購物平台業者和線上賣家均提供有用的經營策略指引。


    “Acquiring a new customer is five/six times more costly than retaining an existing one.” “Increasing customer retention rate by 5% increases profits by 25% to 95%.” Given these statistics, seller has to focus on existing customers to increase profitability in a cost-effective way. Due to the convenience of Internet shopping and unlimited choices for online consumers, accurate prediction of the repurchase behavior of existing customers would undoubtedly become its competitive advantage of e-commerce business.
    In this study, we use web content mining technique to collect real transaction records between buyer and seller at online shopping website, analyze the loyalty repurchase type of consumer, and establish a comprehensive repurchase behavior prediction model containing RFM, rating and loyalty type. We collected the buyers who had rating records of women''s shirt category from Taiwan’s Yahoo! Auction website in March 2012, and collected their historical transaction data with all sellers of women’s shirt category before the April 1st of 2012, with which we analyze the loyalty type of these buyers. Then we collected repurchase data in the following two months for those buyer-seller pairs traded before April. Logistic regression analysis showed that the more recent the last transaction, the higher the frequency of past transactions, the higher the cumulative transaction amount, the lower the average transaction amount, the better the rating of the last transaction, the higher the ranking of cumulative rating of the seller, and the buyer is loyalty to one seller, the probability is higher for the buyer to repurchase from the same seller in next one and two months. Given the prediction model can effectively predict the repurchase behavior of online consumers, this model provides useful guidelines of business strategy for online shopping platform providers and online sellers.

    摘要 iii 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 5 1.3 論文架構 7 第二章 文獻探討 9 2.1 忠誠度與再購 9 2.2 多忠誠再購行為 9 2.3 消費者決策模式 10 2.4 RFM模型 13 2.5 評價機制 13 2.6 滿意度 14 2.7 從眾效應 15 第三章 研究方法 17 3.1 概念模型與假說推導 17 3.2 研究設計 21 3.3 資料分析 28 第四章 資料分析與結果 29 4.1 樣本資料 29 4.2 假說檢定 38 4.3 小結 42 第五章 研究結論與建議 43 5.1 研究結論 43 5.2 研究貢獻 47 5.3 管理意涵與實務意涵 47 5.4 研究限制 48 5.5 未來發展 49 參考文獻 50 英文文獻 50 中文文獻 52

    Anderson, R. E., & Srinivasan, S. S. (2003). E‐satisfaction and e‐loyalty: A contingency framework. Psychology and Marketing, 20(2), 123-138.
    Ariely, D., & Norton, M. I. (2008). How actions create-not just reveal-preferences. Trends in cognitive sciences, 12(1), 13-16.
    Blackwell, R. D., Miniard, P. W., & Engel, J. F. (2001). Consumer behavior, 9th. South-Western Thomas Learning. Mason, OH.
    Bonabeau, E. (2004). The perils of the imitation age. Harvard business review, 82(6), 45-54.
    Boulding, W., Kalra, A., Staelin, R., & Zeithaml, V. A. (1993). A dynamic process model of service quality: from expectations to behavioral intentions. Journal of marketing research, 30(1), 7-27.
    Brown, G. H. (1953). Brand loyalty-fact or fiction. Trademark Rep., 43, 251.
    Buckinx, W., & Van den Poel, D. (2005). Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. European Journal of Operational Research, 164(1), 252-268.
    Chen, S.C. Cao, Z.P. (2008). A comparison of uni- and multi- loyal customers in store choice: the antecedents and performance consequences. In: Proceedings of the Australian and New Zealand Marketing Academy Conference, Sydney, Australia
    Dholakia, U. M., Basuroy, S., & Soltysinski, K. (2002). Auction or agent (or both)? A study of moderators of the herding bias in digital auctions. International Journal of Research in Marketing, 19(2), 115-130.
    Fader, P. S., Hardie, B. G. S., & Lee, K. L. (2005). " Counting Your Customers" the Easy Way: An Alternative to the Pareto/NBD Model. Marketing Science, 275-284.
    Gilkeson, J. H., & Reynolds, K. (2003). Determinants of internet auction success and closing price: An exploratory study. Psychology and Marketing, 20(6), 537-566.
    Halstead, D., & Page, T. J. (1992). The effects of satisfaction and complaining behavior on consumer repurchase intentions. Journal of Consumer Satisfaction, Dissatisfaction and Complaining Behavior, 5(1), 1-11.
    Heskett, J. L., Sasser W. E., Jr., Hart, C. W. (1989). Service Breakthrough, New York:The Free Press.
    Huang, J. H., & Chen, Y. F. (2006). Herding in online product choice. Psychology and Marketing, 23(5), 413-428.
    Hughes, A. M. (2005). Strategic database marketing: McGraw-Hill Companies.
    Kim, D. J., Ferrin, D. L., & Rao, H. R. (2009). Trust and satisfaction, two stepping stones for successful e-commerce relationships: A longitudinal exploration. Information Systems Research, 20(2), 237-257.
    Kotler, P., & Armstrong, G. (2009). Principles of Marketing 12th Edition: Pearson Prentice Hall. Upper saddle river New Jersey.
    Lee, C. H., Eze, U. C., & Ndubisi, N. O. (2011). Analyzing key determinants of online repurchase intentions. Asia Pacific Journal of Marketing and Logistics, 23(2), 200-221.
    Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of marketing research, 460-469.
    Oliver, R. L. (1999). Whence consumer loyalty? the Journal of Marketing, 33-44.
    Park, C. W., & Lessig, V. P. (1977). Students and housewives: Differences in susceptibility to reference group influence. Journal of Consumer Research, 102-110.
    Reichheld, F. F., & Schefter, P. (2000). E-loyalty: your secret weapon on the web. Harvard business review, 78(4), 105-113.
    Samuelson, W., & Zeckhauser, R. (1988). Status quo bias in decision making. Journal of risk and uncertainty, 1(1), 7-59.
    Srinivasan, S. S., Anderson, R., & Ponnavolu, K. (2002). Customer loyalty in e-commerce: an exploration of its antecedents and consequences. Journal of retailing, 78(1), 41-50.
    Verhoef, P. C. (2003). Understanding the effect of customer relationship management efforts on customer retention and customer share development. Journal of marketing, 30-45.
    Yen, C. H., & Lu, H. P. (2008). Effects of e-service quality on loyalty intention: an empirical study in online auction. Managing Service Quality, 18(2), 127-146.
    Yen, C. H., & Lu, H. P. (2008). Factors influencing online auction repurchase intention. Internet Research, 18(1), 7-25.
    Yim, C. K., & Kannan, P. (1999). Consumer Behavioral Loyalty. Journal of Business Research, 44(2), 75-92.
    中文文獻
    財團法人台灣網路資訊中心(民 100 年 1 月)。2011 年臺灣寬頻網路使用調查報告【新聞群組】。2011 年 3 月 15 日取自http://www.twnic.net.tw/download/200307/1101d.pdf
    創市際市場研究顧問 (民96年11月09日。)台灣網路拍賣穩定成長 “Yahoo!奇摩拍賣”獨占鼇頭【新聞群組】。2011年3月16日取自http://www.insightxplorer.com/news/news_11_09_07.html
    創市際市場研究顧問 (民 95 年 12 月 20 日)。八成二網友玩網拍 拍賣偏好男女大不同【新聞群組】。2011 年 3 月 18 日取自http://www.insightxplorer.com/news/news_12_20_06.html

    QR CODE
    :::