| 研究生: |
黃冠傑 Kuan-Chieh Huang |
|---|---|
| 論文名稱: |
離子束濺鍍系統鍍製極紫外光鉬矽多層膜反射 鏡及其微觀結構之分析 Analyzation of The Microstructure of Extreme Ultraviolet Mo/Si Multilayer Mirrors by Ion Beam Sputtering Deposition System |
| 指導教授: |
郭倩丞
Chien-Cheng Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 極紫外光 、鉬矽多層膜 、界面擴散 、離子束濺鍍 |
| 外文關鍵詞: | EUV, Mo/Si multilayer, interdiffusion, Ion Beam Sputtering |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
極紫外光多層膜反射鏡的反射率是極紫外光微影蝕刻技術中決定產能的重要參數。然而組成 EUV 多層膜反射鏡的兩材料 Mo 和 Si 傾向於互相混合以及擴散,因此反射率始終低於理論值。由於離子束濺鍍法低表面粗糙
度及較少缺陷的特性,因此較常被使用來鍍製極紫外光多層膜反射鏡。
因此本論文在製程溫度 60°C 下使用離子束濺鍍法鍍製 Mo/Si 多層膜,
在固定 Si 薄膜的離子束參數為 500V/30mA 下,調整濺鍍 Mo 薄膜的離子束電壓電流大小鍍製 Mo/Si 多層膜,接著使用高解析掃描穿透式電子顯微鏡觀察其界面擴散程度,並以 X 射線反射儀輔助電子顯微鏡的量測結果,最後再使用 X 射線繞射儀量測優選晶向 Mo<110>的結晶狀況。本論文亦探討加入 B4C 材料層(離子束參數 700V/40mA)與否對於多層膜的微觀結構有何影響,並以找出界面擴散程度最低的 Mo 離子束參數為最終目標。
使用 400V/50mA 的 Mo 離子束參數時獲得最低的界面擴散厚度,在
Mo-on-Si 界面與 Si-on-Mo 界面分別為 0.7nm 及 0.46nm。加入 B4C 後多層膜大部分的界面擴散厚度皆下降,其中以使用 600V/50mA 的 Mo 離子束參數下鍍製的多層膜擁有最低的界面厚度,在兩界面的擴散厚度皆為 0.43nm。
原子力顯微鏡量測的平均表面粗糙度結果皆低於 0.1nm,較低的表面
粗糙度代表極紫外光入射時會產生較少散射,獲得較高的反射率。本論文使
用 400V/50mA 及 500V/30mA 的離子源參數分別鍍製 Mo/Si 多層膜中的 Mo薄膜及 Si 薄膜,該多層膜在 Mo-on-Si 界面與 Si-on-Mo 界面的界面擴散厚度分別為 0.71nm 及 0.54nm,並以 34⁰的入射角在 13.5nm 的波長下獲得 40%的 EUV 反射率。
EUV reflectance of the EUV multilayer mirrors plays an important role of raising the throughput of EUVL. The component materials of EUV multilayer mirrors are Mo (molybdenum) and Si (silicon). However, the two materials tend to intermix and diffuse with each other, which makes EUV reflectance always lower than the theoretical value. Because of the lower surface roughness and fewer defects than other deposition techniques, ion beam sputter deposition is more frequently used to fabricate EUV multilayer mirrors.
Thus, in this study, ion beam sputter deposition system was used to fabricate Mo/Si multilayers at 60°C. The parameters of ion beam were fixed at 500V/30mA when coating Si thin films, and those were adjusted when coating Mo thin films
to fabricate different multilayers. HRTEM was used to study the degree of the interface diffusion and XRR was used to support the result of HRTEM. XRD was used to study the crystallization of the preferred orientation Mo<110>. Besides, the changes in the microstructure of multilayers with and without adding the B4C layers were also studied. Lastly, the ultimate goal of this study is to identify the
parameters of the ion beam which results in the lowest degree of the interface diffusion when coating Mo thin films of the multilayer.
The result indicates that the lowest thickness of the interface diffusion was achieved when using 400V/50mA as the parameters of ion beam when coating the Mo thin films of the Mo/Si multilayer, and the thickness of the interface diffusion at the Mo-on-Si interface and Si-on-Mo interface was measured as 0.7nm and 0.46nm, respectively. The addition of the B4C layers at both interfaces resulted in a decrease of the thickness of the interface diffusion for almost all the multilayers. The lowest interface thickness was achieved when using 600V/50mA as the parameters of ion beam when coating the Mo thin films of the B4C/Mo/B4C/Si
multilayer, and the thickness of the interface diffusion were measured as 0.43nm at both Mo-on-Si interface and Si-on-Mo interface.
The result of AFM showed that the average surface roughness of all the multilayers were below 0.1nm. The low surface roughness means that there would
be less scattering while being irradiated by EUV and the multilayers would achieve higher EUV reflectance. 400V/50mA and 500V/30mA were chosen as ion beam parameters to coat Mo and Si thin films of the Mo/Si multilayer, respectively. The thickness of interface diffusion of the multilayer was
respectively measured as 0.71nm and 0.54nm at Mo-on-Si interface and Si-on-Mo interface, and EUV reflectance of the multilayer was measured as 40% with 34 ゚ incident angle at 13.5-nm wavelength.
[1] Young, C. EUV: Enabling cost efficiency, tech innovation and future industry growth. 2019.
[2] 經濟部技術處, 2020/2021年產業技術白皮書(產業篇). 2020.
[3] 曲建仲, FinFET 全面攻佔 iPhone!五分鐘讓你看懂 FinFET. 2015: TechNews. p. https://reurl.cc/DAbbzj.
[4] 施錫龍;丁永強;戴寶通, 極紫外光微影技術簡介, in 電子月刊. 2010. p. 114.
[5] 李正中, 薄膜光學與鍍膜技術. 9 ed. 2020: 藝軒圖書.
[6] 先進光學曝光系統與極紫外光(EUV)就看這一篇!. 2016: Ansforce. p. https://reurl.cc/M8M2KX.
[7] 台積電拚5奈米關鍵技術!影片直擊極紫外光EUV微影技術是怎麼運作的, 蕭閔云, Editor. 2020: 數位時代BUSINESS NEXT.
[8] Saedi, M., et al., Effect of rubidium incorporation on the optical properties and intermixing in Mo/Si multilayer mirrors for EUV lithography applications. Applied Surface Science, 2020. 507.
[9] Louis, E., et al., Nanometer interface and materials control for multilayer EUV-optical applications. Progress in Surface Science, 2011. 86(11-12): p. 255-294.
[10] Louis, E., et al. Progress in Mo/Si multilayer coating technology for EUVL optics. in Emerging Lithographic Technologies IV. 2000. SPIE.
[11] 戴宏穎, 使用離子束濺鍍系統降低EUV反射鏡鉬矽界面擴散層厚度之研究, in 光電科學與工程學系. 2022, 國立中央大學: 桃園縣. p. 129.
[12] Bajt, S.a., Improved reflectance and stability of Mo-Si multilayers. Optical Engineering, 2002. 41(8).
[13] Vinogradov, A. and B.Y. Zeldovich, X-ray and far uv multilayer mirrors: principles and possibilities. Applied optics, 1977. 16(1): p. 89-93.
[14] Optics, C.T.C.F.X.-r. 不同材料在極紫外光波段之折射率及吸收係數的分布情況. Available from: http://www-cxro.lbl.gov/.
[15] Stearns, D.G., R.S. Rosen, and S.P. Vernon. High-performance multilayer mirrors for soft x-ray projection lithography. in Multilayer Optics for Advanced X-Ray Applications. 1992. SPIE.
[16] Yan, P.-y., E. Spiller, and P. Mirkarimi, Characterization of ruthenium thin films as capping layer for extreme ultraviolet lithography mask blanks. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2007. 25(6): p. 1859-1866.
[17] Stuik, R., et al., Peak and integrated reflectivity, wavelength and gamma optimization of Mo/Si, and Mo/Be multilayer, multielement optics for extreme ultraviolet lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1999. 17(6): p. 2998-3002.
[18] Frank, F.C. and J.H. van der Merwe, One-dimensional dislocations. I. Static theory. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1949. 198: p. 205 - 216.
[19] Stranski, I.N. and L. Krastanow, Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1937. 71: p. 351-364.
[20] Liang, T., et al., Growth and printability of multilayer phase defects on extreme ultraviolet mask blanks. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2007. 25(6): p. 2098-2103.
[21] 伍秀菁, 汪., 林美吟, 真空技術與應用. 1 ed. 2001: 國科會精儀中心.
[22] Bajt, S., D.G. Stearns, and P.A. Kearney, Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers. Journal of Applied Physics, 2001. 90(2): p. 1017-1025.
[23] Andreev, S., et al., The microstructure and X-ray reflectivity of Mo/Si multilayers. Thin Solid Films, 2002. 415(1-2): p. 123-132.
[24] Khatri, H. and S. Marsillac, The effect of deposition parameters on radiofrequency sputtered molybdenum thin films. Journal of Physics: Condensed Matter, 2008. 20(5).
[25] 許宏華, et al., Effect of dc sputtering power on structure and electrical properties of Mo thin films. 中正嶺學報, 2014. 43(2): p. 61-68.
[26] Guo, L., et al., Effects of sputtering power on structure and property of Mo films deposited by DC magnetron sputtering. High Power Laser and Particle Beams, 2011. 23.
[27] Filatova, E.O., et al., Inhibition of chemical interaction of molybdenum and silicon in a Mo/Si multilayer structure by the formation of intermediate compounds. Phys Chem Chem Phys, 2021. 23(2): p. 1363-1370.
[28] Braun, S., et al., Mo/Si Multilayers with Different Barrier Layers for Applications as Extreme Ultraviolet Mirrors. Japanese Journal of Applied Physics, 2002. 41(Part 1, No. 6B): p. 4074-4081.
[29] Windt, D.L., IMD—Software for modeling the optical properties of multilayer films. Computers in Physics, 1998. 12(4).
[30] SEN research 4.0. Available from: https://reurl.cc/mLZnlV.
[31] 布拉格繞射示意圖. Available from: https://reurl.cc/nDl4pl.
[32] Windt, D.L., IMD Installation Guide & User’s Manual. 2013.
[33] 原子力顯微鏡原理. Available from: https://reurl.cc/nDl42D.
[34] Zhao, J., et al., Influence of deposition rate on interface width of Mo/Si multilayers. Thin Solid Films, 2015. 592: p. 256-261.
[35] 張宏濱, 磁控濺鍍製備極紫外光高反射率多層膜反射鏡, in 電子工程系碩士班. 2015, 明新科技大學: 新竹縣. p. 50.
[36] Li, Y., et al., Thermal and stress studies of the 30.4nm Mo/Si multilayer mirror for the moon-based EUV camera. Applied Surface Science, 2014. 317: p. 902-907.
[37] 黃信哲, 應用於極紫外光微影之高反射率多層膜反射鏡設計、製作與特性量測, in 工學院加速器光源科技與應用碩士學位學程. 2014, 國立交通大學: 新竹市. p. 66.
[38] Schubert, E., et al., Ion beam sputter deposition of soft x-ray Mo∕ Si multilayer mirrors. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2005. 23(3): p. 959-965.
[39] Zuyev, S.Y., et al., Mo/Si Multilayer Mirrors with B4C and Be Barrier Layers. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2019. 13(2): p. 169-172.
[40] Rauschenbach, B., Ion beam assisted deposition—A processing technique for preparing thin films for high-technology applications. Vacuum, 2002. 69(1-3): p. 3-10.
[41] Yakshin, A., et al., Determination of the layered structure in Mo/Si multilayers by grazing incidence X-ray reflectometry. Physica B: Condensed Matter, 2000. 283(1-3): p. 143-148.
[42] Bozorg-Grayeli, E., et al., Thermal conduction properties of Mo/Si multilayers for extreme ultraviolet optics. Journal of Applied Physics, 2012. 112(8).
[43] Maury, H., et al., Interface characteristics of Mo/Si and B4C/Mo/Si multilayers using non-destructive X-ray techniques. Surface Science, 2007. 601(11): p. 2315-2322.
[44] Patelli, A., et al., Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering. Applied surface science, 2004. 238(1-4): p. 262-268.
[45] Yang, H., et al., Quantification of High Resolution Pulsed RF GDOES Depth Profiles for Mo/B4C/Si Nano-Multilayers. Coatings, 2021. 11(6).