跳到主要內容

簡易檢索 / 詳目顯示

研究生: 阮文浩
Khoe Van Nguyen
論文名稱: 石墨烯中電子與平面聲子交互作用的相關問題分析
Analyses of the In-plane Acoustic-phonon-scattering Related Issues in Graphene
指導教授: 張亞中
Yia-Chung Chang
陳賜原
Szu-yuan Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 131
中文關鍵詞: 石墨烯電子與聲子交互作用Bloch-Grüneisen溫度聲子動量光學檢測器輻射熱計
外文關鍵詞: Graphene, Acoustic-phonon-scattering, Bloch-Grüneisen temperatures, Acoustic phonon momenta, Optical detectors, Bolometers
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯中與音頻 (acoustical)聲子相關的問題包括: 1)高溫和低溫狀態下的音頻聲子散射的不同特性,2)與摻雜濃度相關的布拉赫-格魯奈生(Bloch-Gruneisen)溫度,3)在Bloch-Gruneisen溫度之下,電子-平面聲子交互作用因受到聲子動量短缺的限制所產生的導電變化。在過去的十年中,第一和第二個問題吸引了許多理論和實驗研究,而第三個問題仍未有適當研究。值得一提的是,充分理解石墨烯中的這些問題不僅對於基礎理解很重要,而且對於設計石墨烯相關的元件如光學檢測器,輻射熱計,冷卻通道,和超碰撞等應用。
    在這篇論文中,我們系統性的研究了這三個問題。關於第一個問題,我們嚴謹的推導了在任何有限溫度和摻雜下的非彈性和半彈性電子-聲子散射率。此推導證明了前人推導之高溫散射速率的正確性並校正了低溫散射率。另外在整個溫度範圍內,前人以經驗公式描述的散射率與我們的嚴謹理論所推導散射率相當接近,但是在低溫區域嚴重高估。作為測試平台,我們推導的散射率非常適合用來驗證文獻中的實驗數據。
    對於第二個問題,我們發現前人討論的與摻雜相關的Bloch-Gruneisen溫度有許多待商榷之處。它們的值比正確值小了2到2.5倍。而且,我們推導出包含各種機制的總Bloch-Gruneisen溫度。使用我們的散射率來分析文獻中可用的實驗數據發現:用實驗數據推斷出的總Bloch-Gruneisen溫度與我們的理論預測值完全一致。此外,我們並指出了前人的理論和實驗工作的一些關鍵錯誤和不一致之處。我們的新結果質疑了許多前人有關石墨烯中摻雜相關的Bloch-Gruneisen溫度的理論研究。
    最後,據我所知自1930年布拉赫(F. Bloch)和1933年E. Gruneisen的兩部作品以來,我們首次發現了在石墨烯中電子-聲子散射在Bloch-Grrneisen溫度下的確會受到聲子動量短缺的影響。在應用方面,我們用非彈性的散射率研究了在照光和不照光的情況下,p型石墨烯/ MoS2異質結構中在室溫(300 K)及柵極電壓下轉移電流的變化。


    The in-plane acoustic phonon-related issues in graphene include the in-plane acoustic phonon
    scatterings in the whole temperature range (from low- to high-temperature regime), the dopingdependent
    Bloch-Grüneisen temperatures, and the effect of shortages of in-plane acoustic phonon
    momenta to scatter off electrons at Bloch-Grüneisen temperatures. While the first and second
    issues have been attracting a lot of theoretical and experimental researches during the last
    decade, the third issue remains unexplored. It is worth mentioning that fully comprehending
    these issues in graphene is not only important for fundamental understanding but also for designing
    graphene-based devices such as optical detectors, bolometers, cooling pathways, and
    supercollisions in graphene.
    In this thesis, I systematically investigate the three issues in unprecedented details. Regarding
    the first issue, the inelastic and semi-inelastic scattering rates at any finite temperature and
    doping are derived rigorously, from which the high-temperature scattering rate is reproduced
    and the low-temperature scattering rate is corrected. In addition, the ansatz scattering rate
    manifests its asymptotic behavior to our scattering rates for the whole temperature range; especially,
    the overestimation becomes greater in the low-temperature region. As a test bed, our
    scattering rates well fit the available experimental data in the literature.
    For the second issue, it turns out that the state-of-the-art definitions of the doping-dependent
    Bloch-Grüneisen temperatures need to be revised. Their values should be about 2 􀀀 2.5 times
    smaller. Moreover, the total doping-dependent Bloch-Grüneisen temperatures emerge. Using
    our scattering rates to analyze the available experimental data in the literature, the experimentally
    inferred values of the total doping-dependent Bloch-Grüneisen temperatures completely
    agree with our theoretically predicted values. Additionally, critical mistakes and inconsistencies
    in some theoretical and experimental works are also pointed out. Furthermore, our new
    results question many theoretical researches of formulations relating to the doping-dependent
    Bloch-Grüneisen temperatures in graphene.
    Finally, the last but not the least, as far as I have known since the two works by F. Bloch in
    1930 and E. Grüneisen in 1933, shortages of acoustic phonon momenta to scatter off electrons
    at doping-dependent Bloch-Grüneisen temperatures are observed for the first time. As an application,
    we have used our scattering rates to study transfer current in p-type graphene/MoS2
    heterostructures under a wide range of applied gate voltage at 300 K without and with optical
    pumping.

    Chinese Abstract xi English Abstract xiii Acknowledgements xv List of Publications xvii Contents xx List of Figures xxv List of Tables xxvii List of Abbreviations xxix Physical Constants xxxi List of Symbols xxxiii 1 Introduction 1 2 Full consideration of in-plane acoustic phonon scatterings in two-dimensional Dirac materials 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Relations derived from momentum and energy conservation . . . . . . . . . . . . 6 2.3 The static dielectric function used in the screened deformation potential due to doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 The energy-dependent inelastic EAP scattering rates . . . . . . . . . . . . . . . . . 10 2.5 The energy-dependent semi-inelastic EAP scattering rates . . . . . . . . . . . . . 12 2.6 The energy-dependent quasielastic EAP scattering rates . . . . . . . . . . . . . . . 14 2.7 EAP scattering rates in graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.8 Resistivity due to EAP scattering in graphene . . . . . . . . . . . . . . . . . . . . . 16 2.9 The validity of Matthiessen’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.10 The validity of the conventional determination of the effective deformation potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Doping-dependent BG temperatures in graphene 25 3.1 A concise introduction to BG temperatures in graphene . . . . . . . . . . . . . . . 25 3.2 Theoretical and experimental determinations of BG temperatures in graphene . . 27 3.3 Why have Qa F = 2¯hvakF/kB been largely used as the BG temperatures so far? . . 34 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Observation of shortages of in-plane acoustic phonon momenta to scatter off electrons at doping-dependent BG temperatures in graphene 37 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5 Transfer current in p-type graphene/MoS2 heterostructures 47 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.3.1 Poisson’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3.2 The electrostatic potential energy . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3.3 Calculations of 2D carrier densities . . . . . . . . . . . . . . . . . . . . . . . 52 5.3.4 Determination of the Fermi level based on a newly developed approach . 52 5.3.5 Relationship between the Dirac voltage and the initial chemical potential at 0K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.6 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.4.1 Without optical pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.4.2 With optical pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.5 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6 Contributions and prospects 61 Bibliography 65 A Doping-dependent BG temperatures in graphene 73 A.1 Doping-dependent BG temperatures in graphene are determined by solving the equation r(a)(m, LT) = r(a)(m, HT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A.2 Doping-dependent BG temperatures in graphene are determined by solving the equation d2r(a)(m, T)/dT2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 B Observation of shortages of in-plane acoustic phonon momenta to scatter off electrons at doping-dependent BG temperatures in graphene 81 B.1 T-independent and m-dependent averaged phonon energy . . . . . . . . . . . . . 81 B.2 Full considerations of electrical resistivity in graphene . . . . . . . . . . . . . . . . 82 B.3 Observation of shortages of in-plane acoustic phonon momenta to scatter off electrons at doping-dependent BG temperatures in graphene . . . . . . . . . . . . 83

    [1] J. M. Ziman. Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford:
    Oxford University Press, 1960.
    [2] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Philadelphia: Saunders College
    Publishing, 1976.
    [3] M. Lundstron. Fundamentals of Carrier Transport. Cambridge: Cambridge University Press,
    2000.
    [4] L. Pietronero et al. “Electrical conductivity of a graphite layer”. In: Phys. Rev. B 22 (1980),
    p. 904.
    [5] L. M. Woods and G. D. Mahan. “Electron-phonon effects in graphene and armchair
    (10,10) single-wall carbon nanotubes”. In: Phys. Rev. B 61 (2000), p. 10651.
    [6] H. Suzuura and T. Ando. “Screening effect and impurity scattering in monolayer graphene”.
    In: J. Phys. Soc. Jpn. 75 (2006), p. 074716.
    [7] T. Stauber, N. M. R. Peres, and F. Guinea. “Electronic transport in graphene: A semiclassical
    approach including midgap states”. In: Phys. Rev. B 76 (2007), p. 205423.
    [8] F. T. Vasko and V. Ryzhii. “Voltage and temperature dependencies of conductivity in
    gated graphene”. In: Phys. Rev. B 76 (2007), p. 233404.
    [9] E. H. Hwang and S. Das Sarma. “Acoustic phonon scattering limited carrier mobility in
    two-dimensional extrinsic graphene”. In: Phys. Rev. B 77 (2008), p. 115449.
    [10] K. I. Bolotin et al. “Temperature-dependent transport in suspended graphene”. In: Phys.
    Rev. Lett. 101 (2008), p. 096802.
    [11] J.-H. Chen et al. “Intrinsic and extrinsic performance limits of graphene devices on
    SiO2”. In: Nature Nanotech. 3 (2008), p. 206.
    [12] Eros Mariani and Felix von Oppen. “Flexural phonons in free-standing graphene”. In:
    Phys. Rev. Lett. 100 (2008), p. 076801.
    [13] S. V. Morozov et al. “Giant intrinsic carrier mobilities in graphene and its bilayer”. In:
    Phys. Rev. Lett. 100 (2008), p. 016602.
    [14] Dmitri K. Efetov and Philip Kim. “Controlling electron-phonon interactions in graphene
    at ultrahigh carrier densities”. In: Phys. Rev. Lett. 105 (2010), p. 256805.
    [15] Eduardo V. Castro et al. “Limits on charge carrier mobility in suspended graphene due
    to flexural phonons”. In: Phys. Rev. Lett. 105 (2010), p. 266601.
    [16] K. M. Borysenko et al. “First-principles analysis of electron-phonon interactions in graphene”.
    In: Phys. Rev. B 81 (2010), 121412(R).
    [17] Vasili Perebeinos and Phaedon Avouris. “Inelastic scattering and current saturation in
    graphene”. In: Phys. Rev. B 81 (2010), p. 195442.
    [18] A. A. Kozikov et al. “Electron-electron interactions in the conductivity of graphene”. In:
    Phys. Rev. B 82 (2010), p. 075424.
    [19] K. Zou et al. “Deposition of high-quality HfO2 on graphene and the effect of remote
    oxide phonon scattering”. In: Phys. Rev. Lett. 105 (2010), p. 126601.
    [20] J. K. Viljas and T. T. Heikkila. “Electron-phonon heat transfer in monolayer and bilayer
    graphene”. In: Phys. Rev. B 81 (2010), p. 245404.
    [21] Eros Mariani and Felix von Oppen. “Temperature-dependent resistivity of suspended
    graphene”. In: Phys. Rev. B 82 (2010), p. 195403.
    [22] Aniruddha Konar, Tian Fang, and Debdeep Jena. “Effect of high-k gate dielectrics on
    charge transport in graphene-based field effect transistors”. In: Phys. Rev. B 82 (2010),
    p. 115452.
    [23] X. Li et al. “Surface polar phonon dominated electron transport in graphene”. In: Appl.
    Phys. Lett. 97 (2010), p. 232105.
    [24] C. R. Dean et al. “Boron nitride substrates for high-quality graphene electronics”. In:
    Nature Nanotech. 5 (2010), p. 722.
    [25] Hongki Min, E. H. Hwang, and S. Das Sarma. “Chirality-dependent phonon-limited
    resistivity in multiple layers of graphene”. In: Phys. Rev. B 83 (2011), 161404(R).
    [26] S. Das Sarma et al. “Electronic transport in two-dimensional graphene”. In: Rev. Mod.
    Phys. 83 (2011), p. 407.
    [27] D. R. Cooper et al. “Experimental review of graphene”. In: ISRN Condens. Matter Phys.
    2012 (2012), p. 1.
    [28] Kristen Kaasbjerg, Kristian S. Thygesen, and KarstenW. Jacobsen. “Unraveling the acoustic
    electron-phonon interaction in graphene”. In: Phys. Rev. B 85 (2012), p. 165440.
    [29] H. Ochoa et al. “Scattering by flexural phonons in suspended graphene under back gate
    induced strain”. In: Physica E 44 (2012), p. 963.
    [30] Cheol-Hwan Park et al. “Electron-phonon interactions and the intrinsic electrical resistivity
    of graphene”. In: Nano Lett. 14 (2014), p. 1113.
    [31] Zhenzhu Li, Jinying Wang, and Zhirong Liu. “Intrinsic carrier mobility of Dirac cones:
    The limitations of deformation potential theory”. In: J. Chem. Phys. 141 (2014), p. 144107.
    [32] Thibault Sohier et al. “Phonon-limited resistivity of graphene by first-principles calculations:
    Electron-phonon interactions, strain-induced gauge field, and Boltzmann equation”.
    In: Phys. Rev. B 90 (2014), p. 125414.
    [33] Andrew Lucas et al. “Transport in inhomogeneous quantum critical fluids and in the
    Dirac fluid in graphene”. In: Phys. Rev. B 93 (2016), p. 075426.
    [34] Y. G. You et al. “Role of remote interfacial phonons in the resistivity of graphene”. In:
    Appl. Phys. Lett. 115 (2019), p. 043104.
    [35] H. N. Spector. “AmplifIcation of acoustic waves through interaction with conduction
    electrons”. In: Phys. Rev. 127 (1962), p. 1084.
    [36] A. B. Pippard. “Acoustic amplification in semiconductors and metals”. In: Philos. Mag.
    8 (1963), p. 161.
    [37] O. A. C. Nunes and A. L. A. Fonseca. “Amplification of hippersound in graphene under
    external direct current electric field”. In: J. Appl. Phys. 112 (2012), p. 043707.
    [38] C. X. Zhao,W. Xu, and F. M. Peeters. “Cerenkov emission of terahertz acoustic-phonons
    from graphene”. In: Appl. Phys. Lett. 102 (2013), p. 222101.
    [39] T. I. Andersen et al. “Electron-phonon instability in graphene revealed by global and
    local noise probes”. In: Science 364 (2019), p. 154.
    [40] M. T. Greenaway et al. “Magnetophonon spectroscopy of Dirac Fermion scattering by
    transverse and longitudinal acoustic phonons in graphene”. In: Phys. Rev. B 100 (2019),
    p. 155120.
    [41] P. Kumaravadivel et al. “Strong magnetophonon oscillations in extra-large graphene”.
    In: Nat. Commun. 10 (2019), p. 3334.
    [42] M. S. Fuhrer. “Textbook physics from a cutting-edge material”. In: Physics 3 (2010),
    p. 106.
    [43] Khoe Van Nguyen and Yia-Chung Chang. “Full consideration of acoustic phonon scatterings
    in two-dimensional Dirac materials”. In: Phys. Chem. Chem. Phys. 22 (2020), p. 3999.
    [44] Khoe Van Nguyen and Yia-Chung Chang. “Doping-dependent Bloch-Grüneisen temperatures
    in graphene”. 2020.
    [45] Khoe Van Nguyen and Yia-Chung Chang. “Observation of shortages of acoustic phonon
    momenta to scatter off electrons at doping-dependent Bloch-Grüneisen temperatures in
    graphene”. 2020.
    [46] Khoe Van Nguyen, Shih-Yen Lin, and Yia-Chung Chang. “Transfer current in p-type
    graphene/MoS2 heterostructures”. 2020.
    [47] Y.-W. Tan et al. “Temperature dependent electron transport in graphene”. In: Eur. Phys.
    J. Spec. Top. 148 (2007), p. 15.
    [48] Ashley M. DaSilva et al. “Mechanism for Current Saturation and Energy Dissipation in
    Graphene Transistors”. In: Phys. Rev. Lett. 104 (2010), p. 236601.
    [49] A. Matthiessen and C. Vogt. “On the influence of temperature on the electric conductingpower
    of alloys”. In: Phil. Trans. R. Soc. Lond. 154 (1864), p. 167.
    [50] Valeri N. Kotov et al. “Electron-electron interactions in graphene: Current status and
    perspectives”. In: Rev. Mod. Phys. 84 (2012), p. 1067.
    [51] Hidekatsu Suzuura and Tsuneya Ando. “Phonons and electron-phonon scattering in
    carbon nanotubes”. In: Phys. Rev. B 65 (2002), p. 235412.
    [52] E. Kogan et al. “Energy bands in graphene: Comparison between the tight-binding
    model and ab initio calculations”. In: Phys. Rev. B 89 (2014), p. 165430.
    [53] Y.-W. Tan et al. “Measurement of scattering rate and minimum conductivity in graphene”.
    In: Phys. Rev. Lett. 99 (2007), p. 246803.
    [54] S. Ono and K. Sugihara. “Theory of the transport properties in graphite”. In: J. Phys. Soc.
    Jpn. 21 (1966), p. 861.
    [55] Meng Sun et al. “Bogolon-mediated electron scattering in graphene in hybrid Bose-
    Fermi systems”. In: Phys. Rev. B 99 (2019), p. 115408.
    [56] F. Bloch. “Zum elektrischen Widerstandsgesetz bei tiefen Temperaturen”. In: Zeitschrift
    fur Physik 59 (1930), p. 208.
    [57] E. Grüneisen. “Die Abhängigkeit des elektrischen Widerstandes reiner Metalle von der
    Temperatur”. In: Ann. Phys. (Leipzig) 16 (1933), p. 530.
    [58] V. K. Tewary and B. Yang. “Singular behavior of the Debye-Waller factor of graphene”.
    In: Phys. Rev. B 79 (2009), p. 125416.
    [59] H. L. Stormer et al. “Observation of a Bloch-Grüneisen regime in two-dimensional electron
    transport”. In: Phys. Rev. B 41 (1990), p. 1278.
    [60] O. E. Raichev et al. “Bloch-Grüneisen nonlinearity of electron transport in GaAs/AlGaAs
    heterostructures”. In: Phys. Rev. B 96 (2017), 081407(R).
    [61] R. Bistritzer and A. H. MacDonald. “Electronic Cooling in Graphene”. In: Phys. Rev. Lett.
    102 (2009), p. 206410.
    [62] S. S. Kubakaddi. “Interaction of massless Dirac electrons with acoustic phonons in graphene
    at low temperatures”. In: Phys. Rev. B 79 (2009), p. 075417.
    [63] J. Yan et al. “Dual-gated bilayer graphene hot-electron bolometer”. In: Nature Nanotechnol.
    7 (2012), p. 472.
    [64] W. Chen and Aashish A. Clerk. “Electron-phonon mediated heat flow in disordered
    graphene”. In: Phys. Rev. B 86 (2012), p. 125443.
    [65] E. Munoz. “Phonon-limited transport coefficients in extrinsic graphene”. In: J. Phys.:
    Condens. Matter 24 (2012), p. 195302.
    [66] K. C. Fong and K. C. Schwab. “Ultrasensitive and Wide-Bandwidth Thermal Measurements
    of Graphene at Low Temperatures”. In: Phys. Rev. X 2 (2012), p. 031006.
    [67] R. Somphonsane et al. “Fast Energy Relaxation of Hot Carriers Near the Dirac Point of
    Graphene”. In: Nano Lett. 13 (2013), p. 4305.
    [68] K. C. Fong et al. “Measurement of the Electronic Thermal Conductance Channels and
    Heat Capacity of Graphene at Low Temperature”. In: Phys. Rev. X 3 (2013), p. 041008.
    [69] A. C. Betz et al. “Supercollision cooling in undoped graphene”. In: Nature Physics 9
    (2013), p. 109.
    [70] C. B. McKitterick, D. E. Prober, and M. J. Rooks. “Electron-phonon cooling in large
    monolayer graphene devices”. In: Phys. Rev. B 93 (2016), p. 075410.
    [71] V. Meunier et al. “Physical properties of low-dimensional sp2-based carbon nanostructures”.
    In: Rev. Mod. Phys. 88 (2016), p. 025005.
    [72] M. Ansari and S. S. Z. Ashraf. “Chirality effect on electron phonon relaxation, energy
    loss, and thermopower in single and bilayer graphene in BG regime”. In: J. Appl. Phys.
    122 (2017), p. 164302.
    [73] L. Rani and N. Singh. “Dynamical electrical conductivity of graphene”. In: J. Phys.: Condens.
    Matter 29 (2017), p. 255602.
    [74] R. D’Souza and S. Mukherjee. “First-principles study of the electrical and lattice thermal
    transport in monolayer and bilayer graphene”. In: Phys. Rev. B 95 (2017), p. 085435.
    [75] T. Gunst, K. Kaasbjerg, and M. Brandbyge. “Flexural-Phonon Scattering Induced by
    Electrostatic Gating in Graphene”. In: Phys. Rev. Lett. 118 (2017), p. 046601.
    [76] M. Ansari and S. S. Z. Ashraf. “Electron single flexural phonon relaxation, energy loss
    and thermopower in single and bilayer graphene in the Bloch-Grüneisen regime”. In: J.
    Phys.: Condens. Matter 30 (2018), p. 485501.
    [77] J. C. W. Song, M. Y. Reizer, and L. S. Levitov. “Disorder-Assisted Electron-Phonon Scattering
    and Cooling Pathways in Graphene”. In: Phys. Rev. Lett. 109 (2012), p. 106602.
    [78] Q. Ma et al. “Competing Channels for Hot-Electron Cooling in Graphene”. In: Phys. Rev.
    Lett. 112 (2014), p. 247401.
    [79] K. S. Tikhonov et al. “Resonant supercollisions and electron-phonon heat transfer in
    graphene”. In: Phys. Rev. B 97 (2018), p. 085415.
    [80] J. F. Kong et al. “Resonant electron-lattice cooling in graphene”. In: Phys. Rev. B 97 (2018),
    p. 245416.
    [81] K. S. Novoselov et al. “Electric Field Effect in Atomically Thin Carbon Films”. In: Science
    306 (2004), p. 666.
    [82] A. H. C. Neto et al. “The electronic properties of graphene”. In: Rev. Mod. Phys. 81 (2009),
    p. 109.
    [83] G. E. Jr. Jellison, J. D. Hunn, and H. N. Lee. “Measurement of optical functions of highly
    oriented pyrolytic graphite in the visible”. In: Phys. Rev. B 76 (2007), p. 085125.
    [84] R. R. Nair et al. “Fine Structure Constant Defines Visual Transparency of Graphene”. In:
    Science 320 (2008), p. 1308.
    [85] J. P. Reed et al. “The Effective Fine-Structure Constant of Freestanding Graphene Measured
    in Graphite”. In: Science 330 (2010), p. 805.
    [86] E. J. G. Santos and E. Kaxiras. “Electric-Field Dependence of the Effective Dielectric
    Constant in Graphene”. In: Nano Lett. 13 (2013), p. 898.
    [87] A. Sindona et al. “Calibration of the fine-structure constant of graphene by time-dependent
    density-functional theory”. In: Phys. Rev. B 96 (2017), 201408(R).
    [88] J. Fang, W. G. Vandenberghe, and M. V. Fischetti. “Microscopic dielectric permittivities
    of graphene nanoribbons and graphene”. In: Phys. Rev. B 94 (2016), p. 045318.
    [89] P. Kumar et al. “Thickness and Stacking Dependent Polarizability and Dielectric Constant
    of Graphene–Hexagonal Boron Nitride Composite Stacks”. In: J. Phys. Chem. C 120
    (2016), p. 17620.
    [90] Y.-J. Yu et al. “Tuning the Graphene Work Function by Electric Field Effect”. In: Nano
    Lett. 9 (2009), p. 3430.
    [91] R. Yan et al. “Determination of graphene work function and graphene-insulator-semiconductor
    band alignment by internal photoemission spectroscopy”. In: Appl. Phys. Lett. 101 (2012),
    p. 022105.
    [92] J. T. Seo et al. “Manipulation of graphene work function using a self-assembled monolayer”.
    In: J. Appl. Phys. 116 (2014), p. 084312.
    [93] Z. Deng, Z. Li, andW.Wang. “Electron affinity and ionization potential of two-dimensional
    honeycomb sheets: A first principle study”. In: Chemical Physics Letters 637 (2015), p. 26.
    [94] G. Giovannetti et al. “Doping Graphene with Metal Contacts”. In: Phys. Rev. Lett. 101
    (2008), p. 026803.
    [95] M. Vanin et al. “Graphene on metals: A van der Waals density functional study”. In:
    Phys. Rev. B 81 (2010), 081408(R).
    [96] Z. Klusek et al. “Graphene on gold: Electron density of states studies by scanning tunneling
    spectroscopy”. In: Appl. Phys. Lett. 95 (2009), p. 113114.
    [97] A. Matkovic et al. “Influence of a gold substrate on the optical properties of graphene”.
    In: J. Appl. Phys. 117 (2015), p. 015305.
    [98] W. Gao et al. “Interfacial adhesion between graphene and silicon dioxide by density
    functional theory with van der Waals corrections”. In: J. Phys. D: Appl. Phys. 47 (2014),
    p. 255301.
    [99] L. G. Cancado et al. “Quantifying Defects in Graphene via Raman Spectroscopy at Different
    Excitation Energies”. In: Nano Lett. 11 (2011), p. 3190.
    [100] J. H. Zhong et al. “Quantitative Correlation between Defect Density and Heterogeneous
    Electron Transfer Rate of Single Layer Graphene”. In: J. Am. Chem. Soc. 136 (2014),
    p. 16609.
    [101] Q. H. Wang et al. “Electronics and optoelectronics of two-dimensional transition metal
    dichalcogenides”. In: Nature Nanotechnology 7 (2012), p. 699.
    [102] C. Gong et al. “Band alignment of two-dimensional transition metal dichalcogenides:
    Application in tunnel field effect transistors”. In: Appl. Phys. Lett. 103 (2013), p. 053513.
    [103] J. Kang et al. “Band offsets and heterostructures of two-dimensional semiconductors”.
    In: Appl. Phys. Lett. 102 (2013), p. 012111.
    [104] S. McDonnell et al. “Hole Contacts on Transition Metal Dichalcogenides: Interface Chemistry
    and Band Alignments”. In: ACS Nano 8 (2014), p. 6265.
    [105] Y. Li et al. “Measurement of the optical dielectric function of monolayer transition-metal
    dichalcogenides: MoS2, MoSe2, WS2, and WSe2”. In: Phys. Rev. B 90 (2014), p. 205422.
    [106] A. Laturia, M. L. van de Put, and W. G. Vandenberghe. “Dielectric properties of hexagonal
    boron nitride and transition metal dichalcogenides: from monolayer to bulk”. In:
    NPJ 2D Materials and Applications 2 (2018), p. 6.
    [107] E. J. G. Santos and E. Kaxiras. “Electrically Driven Tuning of the Dielectric Constant in
    MoS2 Layers”. In: ACS Nano 7 (2013), p. 10741.
    [108] A. Kormanyos et al. “Monolayer MoS2: Trigonal warping, the G valley, and spin-orbit
    coupling effects”. In: Phys. Rev. B 88 (2013), p. 045416.
    [109] Y. Li et al. “Work function modulation of bilayer MoS2 nanoflake by backgate electric
    field effect”. In: Appl. Phys. Lett. 103 (2013), p. 033122.
    [110] D. Liu et al. “Sulfur vacancies in monolayer MoS2 and its electrical contacts”. In: Appl.
    Phys. Lett. 103 (2013), p. 183113.
    [111] K. C. Santosh et al. “Impact of intrinsic atomic defects on the electronic structure of
    MoS2 monolayers”. In: Nanotechnology 25 (2014), p. 375703.
    [112] J. Hong et al. “Exploring atomic defects in molybdenum disulphide monolayers”. In:
    Nature Communications 6 (2015), p. 6293.
    [113] S. Salehi and A. Saffarzadeh. “Atomic defect states in monolayers of MoS2 and WS2”.
    In: Surface Science 651 (2016), p. 215.
    [114] Y. Han et al. “Probing Defect-Induced Midgap States in MoS2 Through Graphene-MoS2
    Heterostructures”. In: Adv. Mater. Interfaces 2 (2015), p. 1500064.
    [115] W. J. Yu et al. “Highly efficient gate-tunable photocurrent generation in vertical heterostructures
    of layered materials”. In: Nature Nanotech. 8 (2013), p. 952.
    [116] K. Roy et al. “Optically active heterostructures of graphene and ultrathin MoS2”. In:
    Solid State Commun. 175-176 (2013), p. 35.
    [117] S. Larentis et al. “Band Offset and Negative Compressibility in Graphene-MoS2 Heterostructures”.
    In: Nano Lett. 14 (2014), p. 2039.
    [118] H. Tian et al. “Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2
    Heterojunctions”. In: Sci. Rep. 4 (2014), p. 5951.
    [119] M. Y. Lin et al. “Toward epitaxially grown two-dimensional crystal hetero-structures:
    Single and double MoS2/graphene hetero-structures by chemical vapor depositions”.
    In: Appl. Phys. Lett. 105 (2014), p. 073501.
    [120] A. Ebnonnasir et al. “Tunable MoS2 bandgap in MoS2-graphene heterostructures”. In:
    Appl. Phys. Lett. 105 (2014), p. 031603.
    [121] W. Zhang et al. “Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-
    MoS2 Heterostructures”. In: Sci. Rep. 4 (2014), p. 3826.
    [122] W. J. Yu et al. “Unusually efficient photocurrent extraction in monolayer van der Waals
    heterostructure by tunnelling through discretized barriers”. In: Nature Communications
    7 (2016), p. 13278.
    [123] Y. Garcia-Basabe et al. “Ultrafast charge transfer dynamics pathways in two-dimensional
    MoS2–graphene heterostructures: a core-hole clock approach”. In: Phys. Chem. Chem.
    Phys. 19 (2017), p. 29954.
    [124] S. S. Baik, S. Im, and H. J. Choi. “Work Function Tuning in Two-Dimensional MoS2
    Field-Effect-Transistors with Graphene and Titanium Source-Drain Contacts”. In: Scientific
    Reports 7 (2017), p. 45546.
    [125] B. Sun et al. “Large-area flexible photodetector based on atomically thin MoS2-graphene
    film”. In: Materials and Design 154 (2018), p. 1.
    [126] M. Z. Iqbal, S. Khana, and S. Siddique. “Ultraviolet-light-driven photoresponse of chemical
    vapor deposition grown molybdenum disulfide/graphene heterostructured FET”.
    In: Applied Surface Science 459 (2018), p. 853.

    QR CODE
    :::