跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柯霽恩
Ji-En Ke
論文名稱: 基於黎曼幾何之改良型共同空間型樣法用於想像運動之腦波分類
Classification of Motor Imagery EEG Signals using Improved CSP based on Riemannian Geometry
指導教授: 徐國鎧
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 74
中文關鍵詞: 腦電圖想像運動黎曼幾何切線空間共同空間型樣法線性區別分析
外文關鍵詞: electroencephalography, motor imagery, Riemannian geometry, tangent space, common spatial pattern, linear discriminant analysis
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研製一基於黎曼幾何空間之想像運動的特徵提取演算法,在想像運動的腦電訊號分類中,共同空間型樣法是一個常被用來提取腦電訊號特徵的演算法,透過共同空間濾波器進行資料重組,去除事件不相關雜訊的影響,強化事件相關的腦波特徵,藉以極大化不同訊號群組之間的差異性。相較於腦電訊號的協方差矩陣位在傳統歐式空間;黎曼幾何空間更能夠表達腦電訊號在空間中距離分布。因此本論文以黎曼幾何空間作為基礎,改良現有共同空間型樣法的演算法架構,並利用黎曼幾何空間和切線空間的轉換,提升腦電訊號特徵提取的效果,最後透過BCI競賽和自錄的腦電訊號驗證其分類的準確度有明顯的提升。


    This thesis, based on Riemannian geometric space, focuses on the design and implementation of a classification algorithm for motor imagery Electroencephalography(EEG). When classifing imaginary brain electrical signals, the common spatial pattern method is often used to extract the feature of EEG signals. The common spatial filter performs data reorganization to remove the effects of event-unrelated noise and enhance the EEG feature associated with the event. Thereby it maximizes the difference between different signal groups. Note that the distance distribution of the covariance matrix of the EEG signal located in Riemannian geometry space, that is more distinguishable than that in the traditional Euclidean space. Therefore, based on Riemannian geometric space, this thesis uses the transformation of Riemannian geometric space and tangent space combined with the existing common spatial pattern method to improve the EEG feature extraction effect. Finally, BCI competition and the self-recorded EEG signals are used to verify that the classified accuracy of the proposed method is significantly effective.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 文獻回顧 3 1-4 內容大綱 5 第二章 腦電訊號 6 2-1 大腦活動區 6 2-2 腦波種類簡介 7 第三章 演算法原理與分析 8 3-1 黎曼幾何 8 3-1-1 前言 8 3-1-2 對稱正定矩陣之定義與特性 9 3-1-3 黎曼幾何距離 11 3-1-4 指數/對數投影 13 3-1-5 SPD矩陣的平均值 16 3-2最短黎曼距離CSP設計與實現 18 3-2-1 共同空間型樣法 19 3-2-2 最短距離到黎曼均值 23 3-2-3 最短黎曼距離CSP 24 3-3 線性區別分析 26 3-3-1組內分散量 27 3-3-2 組間分散量 29 3-3-3 最佳化投影矩陣 30 第四章 實驗與討論 31 4-1 腦波資料 31 4-1-1 BCI 競賽 IV IIa 31 4-1-2 自行錄製之腦波資料 32 4-2 CSP 之濾波器參數n值比較 33 4-3 切線空間之比較 44 4-4 實驗結果 48 第五章 結論與未來展望 54 參考文獻 55

    [1] N. Lu, T. Li, X. Ren, and H. Miao, “A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 6, pp. 566-576, Jun. 2017.
    [2] W. He, Y. Zhao, H. Tang, C. Sun, and W. Fu, “A Wireless BCI and BMI System for Wearable Robots”, IEEE Trans. Syst., Man, and Cybern.: Syst., vol. 46, no. 7, pp. 936-946, Jul. 2016.
    [3] L. F. Nicolas-Alonso, R. Corralejo, J. Gomez-Pilar, D. Álvarez, and R. Hornero, “Adaptive Stacked Generalization for Multiclass Motor Imagery-Based Brain Computer Interfaces”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 4, pp.702-712, Feb. 2015.
    [4] H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, “Optimal Spatial Filtering of Single Trial EEG During Imagined Hand Movement”, IEEE Trans. Rehabil. Eng., vol. 8, no. 4, pp. 441-446, Dec. 2000.
    [5] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller, “Optimizing Spatial filters for Robust EEG Single-Trial Analysis”, IEEE Signal Process. Mag., vol. 25, no. 1, pp. 41-56, Jan. 2008.
    [6] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Multiclass Brain–Computer Interface Classification by Riemannian Geometry”, IEEE Trans. Biomed. Eng., vol. 59, no. 4, pp. 920-928, Apr. 2012.
    [7] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Classification of covariance matrices using a Riemannian-based kernel for BCI applications”, Neurocomputing, vol. 112, pp. 172-178, May 2013.
    [8] S. Sakhavi, C. Guan, and S. Yan, “Learning Temporal Information for Brain-Computer Interface Using Convolutional Neural Networks”, IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp.5619-5629, Nov. 2018.
    [9] B. Xu, L. Zhang, A. Song, C. Wu, W. Li, D. Zhang, G. Xu, H. Li, and H. Zeng, “Wavelet Transform Time-Frequency Image and Convolutional Network-Based Motor Imagery EEG Classification”, IEEE Access, vol. 7, pp. 6084-6093, Dec. 2018.
    [10] H. Lu, H. -L. Eng, C. Guan, K. N. Plataniotis, and A. N. Venetsanopoulos, “Regularized Common Spatial Pattern With Aggregation for EEG Classification in Small-Sample Setting” , IEEE Trans. Biomed. Eng., vol. 57, no. 12, pp. 2936-2946, Dec. 2010.
    [11] V. Mishuhina, and X. Jiang, “Feature Weighting and Regularization of Common Spatial Patterns in EEG-Based Motor Imagery BCI”, IEEE Signal Process. Lett., vol. 25, no. 6, pp. 783-787, Jun. 2018.
    [12] S. -H. Park, D. Lee, and S.-G. Lee, “Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no.2, pp. 498-505, Feb. 2018.
    [13] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface”, 2008 IEEE Int. Joint Conf. Neural Netw., pp. 2390-2397, Jun. 2008.
    [14] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction”, Science, vol. 290, no. 5500, pp. 2319-2323, Dec. 2000.
    [15] S. T. Roweis, and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding”, Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000.
    [16] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Common Spatial Pattern revisited by Riemannian Geometry”, 2010 IEEE Int. Workshop Multimedia Signal Process., pp. 472-476, Jun. 2010.
    [17] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “BCI Signal Classification using a Riemannian-based kernel”, in 20th European Symp. Artificial Neural Networks, Computational Intelligence Machine Learning, Michel Verleysen, pp. 97-102, Apr. 2012.
    [18] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Riemannian Geometry Applied to BCI Classification”, Latent Variable Analysis and Signal Separation – (LVA-ICA), vol. 6365, pp. 629-636, 2010.
    [19] X. Xie, Z. L. Yu, H. Lu, Z. Gu, and Y. Li, “Motor Imagery Classification Based on Bilinear Sub-Manifold Learning of Symmetric Positive-Definite Matrices”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 6, pp. 504-516, Jun. 2017.
    [20] X. Xie, Z. L. Yu, Z. Gu, J. Zhang, L. Cen, and Y. Li, “Bilinear Regularized Locality Preserving Learning on Riemannian Graph for Motor Imagery BCI”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 3, pp. 698-708, Mar. 2018.
    [21] X. Xie, Z. L. Yu, Z. Gu, and Y. Li, “Classification of symmetric positive definite matrices based on bilinear isometric Riemannian embedding”, Pattern Recognition, vol. 87, pp. 94-105, Mar. 2019.
    [22] T. Lin, and H. Zha, “Riemannian Manifold Learning”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 5, pp. 796-809, May 2008.
    [23] M. Moakher, “A differential geometric approach to the geometric mean of symmetric positive-definite matrices”, SIAM J. Matrix Anal. Appl., vol. 26, no. 3, pp. 735-747, Jul. 2005.
    [24] P. Fletcher , and S. Joshi, “Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors”, in Proc. Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis, pp. 87-98, May. 2004.
    [25] Y. Liu, Y. Liu, and K. C. C Chan, “Multilinear Isometric Embedding for Visual Pattern Analysis”, 2009 IEEE 12th Int. Conf. Comput. Vis., pp. 212-218, Oct. 2009.
    [26] X. He, D. Cai, and P. Niyogi, “Tensor Subspace Analysis”, in Advances in Neural Information Processing Systems 18 (NIPS), pp. 499-506, Dec. 2005.
    [27] F. Yger, M. Berar, and F. Lotte, “Riemannian Approaches in Brain-Computer Interfaces: A Review”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 10, Oct. 2017.
    [28] W. O. Tatum, “Ellen R. Grass Lecture : Extraordinary EEG”, Neurodiagnostic Journal, vol. 54, pp. 3-21, Mar. 2014.
    [29] G. Pfurtscheller, and F. H. L. da Silva, “Event-related EEG/MEG synchronization and desynchronization : basic principles”, Clin. Neurophysiol., vol. 110, no. 11, pp. 1842-1857, 1999.
    [30] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, and F. Yger, “A review of classification algorithms for EEG-based brain–computer interfaces : a 10 year update”, Journal of neural engineering, vol. 15, no. 3, p.031005, Jun. 2018.
    [31] K. K. Ang, and C. Guan, “Brain–Computer Interface for Neurorehabilitation of Upper Limb After Stroke”, Proc. IEEE, vol. 103, no. 6, pp. 944-953, Jun. 2015.
    [32] P. Wang, A. Jiang, X. Liu, J. Shang, and L. Zhang, “LSTM-Based EEG Classification in Motor Imagery Tasks”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 11, pp. 2086-2095, Nov. 2018.
    [33] S. Bhattacharyya, A. Konar, and D. N. Tibarewala, “Motor Imagery and Error Related Potential Induced Position Control of a Robotic Arm”, IEEE/CAA J. Automatica Sinica, vol. 4, no. 4, pp. 639-650, Sep. 2017.
    [34] C. Brunner, R. Leeb, G. Müller-Putz, A. Schlögl, and G. Pfurtscheller, “BCI competition 2008—Graz data set a”, Graz Univ. Technol., Graz, Austria.

    QR CODE
    :::