跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳彥旻
Yan-Min Chen
論文名稱: 窄頻物聯網應用中上行鏈路同步技術研究
Uplink Synchronization Technique for Narrowband Internet-of-Things Applications
指導教授: 林嘉慶
Jia-Chin Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 64
中文關鍵詞: 檢測與估計窄頻物聯網窄頻物理隨機存取通道上行鏈路同步技術
外文關鍵詞: detection and estimation, narrowband Internet-of-Things (NB-IoT), narrowband physical random access channel (NPRACH), uplink synchronization
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 窄頻物聯網(narrowband Internet of Things, NB-IoT)是第三代合作夥伴計畫(the third generation partnership project, 3GPP)在規範中新指定的應用範例,旨在同時支持大量用戶設備(user equipment, UE)在大規模機器通信(massive machine-type communication, mMTC)的場景中運作。上行鏈路中,與移動通信網路中UE啟動隨機接入(random access, RA)過程以請求上行資源相似,NB-IoT中的UE透過窄頻物理隨機存取通道(narrowband physical random access channel, NPRACH)發送前導碼,並藉其作為檢測UE的依據。RA作為處理UE及基地台間的首要程序,目標是讓UE能被基地台識別並進行同步,在此過程,除了要檢測出所有活躍的UE,還必須對其同步參數進行估計才能及時回傳給UE做修正,包含載波頻率偏移(carrier frequency offset, CFO)與時序誤差(timing error, TE)。本文主要對於NB-IoT上行鏈路的同步方案,在檢測方法中採用了基於奈曼-皮爾森準則(Neyman-Pearson criterion)的符元平均功率檢測;對於參數的估計則採用最大聯合概似估計(joint maximum-likelihood estimation, JMLE)方法。基於上述方案,考量了加性白高斯雜訊(additive white Gaussian noise, AWGN)通道以及3GPP協定所定義的仿真多路徑衰落通道模型,擴展步行模型(extended pedestrian A model, EPA)通道進行模擬,並且討論了在有CFO以及TE之下對於檢測出的誤報機率(false alarm probability)、漏檢機率(miss detection probability)所造成的影響。


    Narrowband Internet-of-Things (NB-IoT) is a new application specified in the specifications of the third generation partnership project (3GPP), aiming to support a large number of user equipment devices (UEs) operating in the scenario of massive machine-type communication (mMTC). In the uplink, similar to the random access (RA) process initiated by UE in mobile communication networks to request uplink resources, a UE in NB-IoT sends preambles via the narrowband physical random access channel (NPRACH) and the serving base station detects the preamble for the active UE. RA serves as a primary procedure for handling UE and base station interactions, with the goal of enabling base stations to identify and synchronize with UE. In this process, besides detecting all active UEs, it is also necessary to estimate their synchronization parameters to provide timely feedback to UE for correction, including carrier frequency offset (CFO) and timing error (TE). This thesis mainly focuses on the synchronization scheme for the NB-IoT uplink. In the detection method, a symbol-average power detection based on the Neyman-Pearson criterion is employed; for parameter estimation, the joint maximum-likelihood estimation (JMLE) method is used. Based on the above scheme, considering the additive white Gaussian noise (AWGN) channel and the simulation multipath fading channel model defined by the 3GPP protocol, the extended pedestrian A model (EPA) channel is simulated, and the impacts caused by false alarm probability and miss detection probability with the presence of CFO and TE are investigated.

    摘 要 i Abstract ii 致 謝 iii 圖目錄 vi 表目錄 viii 第一章 序論 - 1 - 1.1研究背景 - 1 - 1.2研究動機 - 3 - 第二章 NPRACH及前導碼介紹 - 5 - 2.1 隨機存取過程 - 5 - 2.2 NPRACH及前導碼 - 7 - 2.2.1 前導碼 - 7 - 2.2.2 前導碼跳頻模式 - 9 - 第三章 系統模型 - 12 - 3.1 訊號模型 - 12 - 3.2 通道模型 - 14 - 3.2.1 AWGN通道 - 14 - 3.2.2 多路徑衰落通道 - 14 - 第四章 窄頻物聯網之上行鏈路同步技術 - 19 - 4.1 基於奈曼-皮爾森方法的檢測 - 20 - 4.2 CFO與TE的聯合估計 - 25 - 第五章 模擬結果與討論 - 28 - 5.1 NPRACH前導碼可視化 - 28 - 5.2 前導碼檢測 - 32 - 5.2.1 AWGN通道下之模擬結果 - 33 - 5.2.2 EPA通道下之模擬結果 - 38 - 5.3 CFO與TE估計 - 44 - 5.3.1 AWGN通道下之模擬結果 - 44 - 5.3.2 EPA通道下之模擬結果 - 46 - 第六章 結論 - 48 - 參考文獻 - 49 -

    [1] 3GPP TS 36.300, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN),” Overall Description, Version 13.2.0, Release 13, Jan. 2016.
    [2] J. Chen, K. Hu, Q. Wang, Y. Sun, Z. Shi, and S. He, "Narrowband Internet of Things: Implementations and Applications," IEEE Internet of Things Journal, vol. 4, no. 6, pp. 2309-2314, Dec. 2017.
    [3] R. Ratasuk, N. Mangalvedhe, J. Kaikkonen, and M. Robert, “Data Channel Design and Performance for LTE Narrowband IoT,” 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), pp. 1-5, Sept. 2016.
    [4] Y.-P. E. Wang, X. lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman, and H. S. Razaghi, "A primer on 3GPP narrowband Internet of Things," IEEE communications magazine, vol. 55, no. 3, pp. 117-123, Mar. 2017.
    [5] Y. Wen, W. Huang, Z. Zhang, “CAZAC sequence and its application in LTE random access,” 2006 IEEE Information Theory Workshop - ITW '06 Chengdu, pp. 544-547, Oct. 2006.
    [6] 3GPP, "NB-IoT--Hopping Pattern or Single Tone NB-PRACH, document R1-160439," Ericsson, Stockholm, Sweden, Feb. 2016.
    [7] 3GPP, "NB-IoT--NPRACH Sequences, document R1-161834," Ericsson, Stockholm, Sweden, Mar. 2016.
    [8] 3GPP TS 36.331, “Technical Specification Group Radio Access Network and Evolved Universal Terrestrial Radio Access (E-UTRA),” Radio Resource Control (RRC) Protocal Specification, Version 14.2.0, Release 14, Mar. 2017.
    [9] 3GPP, “Feature Lead Summary NPRACH Reliability and Range Enhancements, document R1-1807429,” Sophia Antipolis, France, May. 2018.
    [10] A. Chakrapani, "NB-IoT uplink receiver design and performance study," IEEE Internet of Things Journal, vol. 7, no. 3, pp. 2469-2482, Mar. 2020.
    [11] M. Kanj, V. Savaux, and M. L. Guen, "A tutorial on NB-IoT physical layer design," IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2408-2446, Fourthquarter 2020.
    [12] X. Lin, A. Adhikary, and Y.-P. E. Wang, "Random access preamble design and detection for 3GPP narrowband IoT systems," IEEE Wireless Communications Letters, vol. 5, no. 6, pp. 640-643, Dec. 2016.
    [13] H.Chougrani, S.Kisseleff and S.Chatzinotas, "Efficient preamble detection and time-of-arrival estimation for single-tone frequency hopping random access in NB-IoT," IEEE Internet of Things Journal, vol. 8, no. 9, pp. 7437-7449, May. 2021.
    [14] J.-C. Lin, "Differentially coherent PN code acquisition with full-period correlation in chip-synchronous DS/SS receivers," IEEE Transactions on Communications, vol. 50, no. 5, pp. 698-702, May. 2002.
    [15] Q. Wu, P. Wu, W. Wen, T. Yang, and M. Xia, "An efficient NPRACH receiver design for NB-IoT systems," IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10418-10426, Oct. 2020.
    [16] J.-K. Hwang, C.-F. Li, and C. Ma, "Efficient detection and synchronization of superimposed NB-IoT NPRACH preambles," IEEE Internet of Things Journal, vol. 6, no. 1, pp. 1173-1182, Feb. 2019.
    [17] Y. R. Kumar, and N. M. Balasubramanya, "Deep Learning based Random Access Preamble Detection for 3GPP NB-IoT Systems," 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1689-1694, 2022.
    [18] F. A. Aoudia, J. Hoydis, S. Cannerer, M. V. Keirsbilck, and A. Keller, "Deep Learning-Based Synchronization for Uplink NB-IoT," GLOBE-COM 2022-2022 IEEE Global Communications Conference, pp. 1478-1483, 2022.
    [19] J. Zhang, D. Xie, and X. Wang, "TARA: An efficient random access mechanism for NB-IoT by exploiting TA value difference in collided preambles," IEEE Transactions on Mobile Computing, vol. 21, no. 3, pp. 1110-1123, Mar. 2022.
    [20] C. Liu, G. Ma, R. He, B. Ai, R. Chen, H. Zhang, and B. Liu, "An Improved NPRACH Preamble Frequency Hopping Pattern for Reducing Preamble Collision," in 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong, 2023.
    [21] 3GPP TS 36.211, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN),” Physical channels and modulation, Version 17.4.0, Release 17, Sept. 2023.
    [22] J. G. Proakis and M. Salehi, Digital Communications, Fifth Edition, McGraw-Hill Education, 2008.
    [23] 3GPP TS 36.104, “Evolved Universal Terrestrial Radio Access (E-UTRA),” Base Station (BS) radio transmission and reception, Version 18.3.0, Release 18, Sept. 2023.
    [24] S. M. Kay, Fundamentals of Statistical Signal Processing-- Volume II: Detection Theory, Prentice Hall, 1998.
    [25] J.- C. Lin, Y.- T. Sun, and H. V. Poor, "Initial Synchronization Exploiting Inherent Diversity for the LTE Sector Search Process," IEEE Transactions on Wireless Communications, vol. 15, no. 2, pp. 1114-1128, Feb. 2016.
    [26] J.-C. Lin, "NB-IoT Physical Random Access Channels (NPRACHs) with Intercarrier Interference (ICI) reduction," IEEE Internet of Things Journal, vol. 11, no. 3, pp. 5427-5438, Feb. 2024.

    QR CODE
    :::