| 研究生: |
瑞吉雅 Guia Raymundo |
|---|---|
| 論文名稱: |
光學奈米流道應用於至十萬鹼基對之DNA極速尺寸分析 Ultrafast size profiling of 100 kilo-base paired DNA using optonanofluidic device |
| 指導教授: |
周家復
Chia-Fu Chou 陳志強 Chi-Keung Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 生物物理研究所 Graduate Institute of Biophysics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 指紋鑑定 、限制酶定位法 、流行病學基因分型 、次世代定序 |
| 外文關鍵詞: | DNA fingerprinting, restriction mapping, epidemiological genotyping, next-generation sequencing |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
DNA 長度的量測在生物領域中是項非常重要的技術。例如DNA 指紋鑑定(DNA
fingerprinting)、 限制酶定位法(restriction mapping)、流行病學基因分型
(epidemiological genotyping)、次世代定序(next-generation sequencing)等等的生物
技術中,都需要量測DNA 之長度。最傳統的DNA 長度量測方式為凝膠電泳法(Gel
electrophoresis)。然而此方法只適用於量測長度50 kbps 以下之DNA。對於50 kbps 以上之DNA,則需要藉由週期性改變電場方向的方式,也就是脈衝場凝膠電泳法(Pulsed
Field Gel Electrophoresis),來完成DNA 長度的量測。然而脈衝場凝膠電泳的量測時間
需要數小時至數天。此篇論文將展示一種新的DNA 長度量測技術。此技術結合奈米流道生物晶片以及單分子數位影像分析,目前已經可以於10~60 分鐘,量測長度最長 100 kbps左右之DNA。未來此技術將有潛力達到於30 分鐘內,量測1000 kbps 長度以上之DNA。
DNA sizing is one of the most crucial processes in molecular biology. It is important for processes in DNA fingerprinting, restriction mapping , epidemiological genotyping, and the growing utility of next-generation sequencing. In the past decades, DNA gel electrophporesis has been the main tool at lab-bench to separateDNA fragments; however, challenges persist when sizing DNA molecules up to 50 kbp. Although pulse-field gel electrophoresis (PFGE) can separate long DNA fragments up to mega-base pairs by the periodic change of the electric field direction, PFGE usually lasts from hours to days. Here, we provide a simple single-molecule based DNA profiling device and methodology with designated algorithm to achieve an ultrafast size profiling. Samples up to 100 kbp
DNA molecules were efficiently sized into bands from 10 to 60 minutes. Our
results establish the ability, far beyond the conventional gel electrophoresis, for
easy and quick DNA sizing up to 100-base pairs in complex DNA samples. We
expect our method can size DNA molecules up to mega-base pairs for less than
30 minutes.
[1] Katie M Horsman et al. “Forensic DNA analysis on microfluidic devices:
a review”. In: Journal of forensic sciences 52.4 (2007), pp. 784–799.
[2] Stephen C Jacobson and J Michael Ramsey. “Integrated microdevice for
DNA restriction fragment analysis”. In: Analytical chemistry 68.5 (1996),
pp. 720–723.
[3] Louis Dubeau et al. “Southern blot analysis of DNA extracted from
formalin-fixed pathology specimens”. In: Cancer Research 46.6 (1986),
pp. 2964–2969.
[4] Kit-SumWong and Jolita Uthe. “New Advances in NGS Library Prep QC:
gDNA Metric, Larger Fragments, Higher Sample Sensitivity”. In: Genetic
Engineering & Biotechnology News 35.5 (2015), pp. 22–23.
[5] David C Schwartz and Charles R Cantor. “Separation of yeast
chromosome-sized DNAs by pulsed field gradient gel electrophoresis”.
In: cell 37.1 (1984), pp. 67–75.
[6] Bnice W Birren et al. “Optimized conditions for pulsed field gel electrophoretic
separations of DNA”. In: Nucleic acids research 16.15 (1988),
pp. 7563–7582.
[7] Georges F Carle, Mark Frank, and Maynard V Olson. “Electrophoretic
separations of large DNA molecules by periodic inversion of the electric
field”. In: Science 232.4746 (1986), pp. 65–68.
[8] Kevin D Dorfman et al. “Beyond gel electrophoresis: Microfluidic separations,
fluorescence burst analysis, and DNA stretching”. In: Chemical reviews
113.4 (2013), pp. 2584–2667.
[9] Pier Giorgio Righetti. Capillary electrophoresis in analytical biotechnology: a
balance of theory and practice. Vol. 4. CRC press, 1995.
[10] Herb Schwartz and Andras Guttman. Separation of DNA by capillary electrophoresis.
Citeseer, 1995.
[11] Chia-Fu Chou et al. “Sorting by diffusion: An asymmetric obstacle
course for continuous molecular separation”. In: Proceedings of the National
Academy of Sciences 96.24 (1999), pp. 13762–13765.
[12] Jongyoon Han and Harold G Craighead. “Separation of long DNA
molecules in a microfabricated entropic trap array”. In: Science 288.5468
(2000), pp. 1026–1029.
[13] Joshua David Cross, Elizabeth A Strychalski, and Harold G Craighead.
“Size-dependent DNA mobility in nanochannels”. In: Journal of Applied
Physics 102.2 (2007), p. 024701.
[14] Derek Stein et al. “Pressure-driven transport of confinedDNApolymers in
fluidic channels”. In: Proceedings of the National Academy of Sciences 103.43
(2006), pp. 15853–15858.
[15] Chia-Fu Chou et al. “Electrodeless dielectrophoresis of single-and doublestranded
DNA”. In: Biophysical journal 83.4 (2002), pp. 2170–2179.
[16] Kuo-Tang Liao and Chia-Fu Chou. “Nanoscale molecular traps and dams
for ultrafast protein enrichment in high-conductivity buffers”. In: Journal
of the American Chemical Society 134.21 (2012), pp. 8742–8745.
[17] Eileen T Dimalanta et al. “A microfluidic system for large DNA molecule
arrays”. In: Analytical chemistry 76.18 (2004), pp. 5293–5301.
[18] Dmitry Torchinsky and Yuval Ebenstein. “Sizing femtogram amounts of
dsDNA by single-molecule counting”. In: Nucleic acids research 44.2 (2016),
e17–e17.
[19] WPatrick Ambrose et al. “Flow cytometric sizing of DNA fragments”. In:
Topics in fluorescence spectroscopy. Springer, 2003, pp. 239–270.
[20] Alonso Castro, Frederic R Fairfield, and E Brooks Shera. “Fluorescence
detection and size measurement of single DNA molecules”. In: Analytical
Chemistry 65.7 (1993), pp. 849–852.
[21] Jean-Louis Viovy. “Electrophoresis of DNA and other polyelectrolytes:
Physical mechanisms”. In: Reviews of Modern Physics 72.3 (2000), p. 813.
[22] What is gel electrophoresis? 2021. URL: https://www.yourgenome.org/
facts/what-is-gel-electrophoresis.
[23] KA Ferguson. “Starch-gel electrophoresis—application to the classification
of pituitary proteins and polypeptides”. In: Metabolism 13.10 (1964),
pp. 985–1002.
[24] Philippe Cluzel et al. “DNA: an extensible molecule”. In: Science 271.5250
(1996), pp. 792–794.
[25] Leonard S Lerman and Harry L Frisch. “Why does the electrophoretic mobility
of DNA in gels vary with the length of the molecule?” In: Biopolymers:
Original Research on Biomolecules 21.5 (1982), pp. 995–997.
[26] Gary W Slater et al. “Quantitative analysis of the three regimes of DNA
electrophoresis in agarose gels”. In: Biopolymers: Original Research on
Biomolecules 27.3 (1988), pp. 509–524.
[27] Gary W Slater. “Theory of band broadening for DNA gel electrophoresis
and sequencing”. In: Electrophoresis 14.1 (1993), pp. 1–7.
[28] Tom Duke. “The Physics of DNA Electrophoresis”. In: Biologically Inspired
Physics. Springer, 1991, pp. 71–80.
[29] Mary Elizabeth Kaufmann. “Pulsed-field gel electrophoresis”. In: Molecular
bacteriology. Springer, 1998, pp. 33–50.
[30] Katheleen Gardiner. “Pulsed field gel electrophoresis”. In: Analytical chemistry
63.7 (1991), pp. 658–665.
[31] Cassandra L Smith and Charles R Cantor. “[28] Purification, specific fragmentation,
and separation of large DNA molecules”. In: Methods in enzymology
155 (1987), pp. 449–467.
[32] TAJ Duke and RH Austin. “Microfabricated sieve for the continuous sorting
of macromolecules”. In: Physical review letters 80.7 (1998), p. 1552.
[33] Jongyoon Han, SW Turner, and Harold G Craighead. “Entropic trapping
and escape of long DNA molecules at submicron size constriction”. In:
Physical review letters 83.8 (1999), p. 1688.
[34] J Calvin Giddings et al. Unified separation science. Wiley, 1991.
[35] Thomas T Perkins, Douglas E Smith, and Steven Chu. “Single polymer
dynamics in an elongational flow”. In: Science 276.5321 (1997), pp. 2016–
2021.
[36] F Brochard and PG De Gennes. “Dynamical scaling for polymers in theta
solvents”. In: Macromolecules 10.5 (1977), pp. 1157–1161.
[37] KK Sriram et al. “DNA combing on low-pressure oxygen plasma modified
polysilsesquioxane substrates for single-molecule studies”. In: Biomicrofluidics
8.5 (2014), p. 052102.
[38] A Bensimon et al. “Alignment and sensitive detection of DNA by a moving
interface”. In: Science 265.5181 (1994), pp. 2096–2098.
[39] Zhengping Huang, James H Jett, and Richard A Keller. “Bacteria genome
fingerprinting by flow cytometry”. In: Cytometry: The Journal of the International
Society for Analytical Cytology 35.2 (1999), pp. 169–175.
[40] Jeffrey T Petty et al. “Characterization of DNA size determination of
small fragments by flow cytometry”. In: Analytical Chemistry 67.10 (1995),
pp. 1755–1761.
[41] Zhengping Huang et al. “Large DNA fragment sizing by flow cytometry:
application to the characterization of P1 artificial chromosome (PAC)
clones”. In: Nucleic acids research 24.21 (1996), pp. 4202–4209.
[42] Robert C Habbersett and James H Jett. “An analytical system based on
a compact flow cytometer for DNA fragment sizing and single-molecule
detection”. In: Cytometry Part A: The Journal of the International Society for
Analytical Cytology 60.2 (2004), pp. 125–134.
[43] MatthewMFerris et al. “Performance assessment of DNA fragment sizing
by high-sensitivity flow cytometry and pulsed-field gel electrophoresis”.
In: Journal of clinical microbiology 42.5 (2004), pp. 1965–1976.
[44] George B Arfken and Hans J Weber. Mathematical methods for physicists.
1999.
[45] Ronald Newbold Bracewell and Ronald N Bracewell. The Fourier transform
and its applications. Vol. 31999. McGraw-Hill New York, 1986.
[46] Tadeusz Guszczynski et al. “Capillary zone electrophoresis of large
DNA”. In: Electrophoresis 14.1 (1993), pp. 523–530.
[47] Alexandra Agronskaia et al. “Two-color fluorescence in flow cytometry
DNA sizing: Identification of single-molecule fluorescent probes”. In: Analytical
chemistry 71.20 (1999), pp. 4684–4689.