跳到主要內容

簡易檢索 / 詳目顯示

研究生: 范姜智順
Chih-Shun Fan-chiang
論文名稱: 螢光粉簡易混色模型
Simple Modeling of Phosphors for Color Mixing
指導教授: 楊宗勳
Tsung-Hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 95
語文別: 中文
論文頁數: 58
中文關鍵詞: 色彩學色彩混色螢光粉光源混色
外文關鍵詞: phosphor, color mixing, chromaticity
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去半個世紀以來,螢光粉在發光及顯示器的應用上,一直扮演著重要的角色。然而在螢光光源的製作過程中,為了要求不同色度值的表現,需要對三基色螢光粉的重量比例作不同的改變。但由於螢光材料本身及製作環境會對調製的比例造成影響,所以在每次重量比例的選擇多以調製者依經驗法則來達成,導致時間的浪費且人為調製的影響因素較難以控制。
    基於螢光發光光源本身是由三基色螢光粉混色發光,所以本文提出一個由螢光發光源本身的發光光譜的色彩表現,利用色彩加法混色原理建構出混光比和三基色螢光粉重量混合比例的關係模型,用來解決以往利用傳統經驗法則調製配方的問題,且成功的應用於冷陰極管螢光粉的配方設計,並可控制色度值的誤差在0.003。
    在實際運用的成本考量方面,通常是利用三基色螢光的螢光混合色粉為配方設計的基底,藉由增加三基色螢光粉來調制色度值。利用本文所提出的關係模型可用來計算三基色螢光粉的重量添加方式,因此更進一步得到最佳的螢光粉重量和色度值。


    Before Since half a century ago, phosphor technology has been playing an important role in the applications of the general lighting and the display engineering both. However, the combination recipes of the color phosphors to goal at the target chromaticity ate still built up by the experiments of trials and errors. It is of great time-consuming and very inefficient. Therefore, how to quickly obtain the accurate weight ratios of phosphors in the combination recipes becomes a critical issue of phosphor technology for many practical applications.
    In this work, firstly the principle of the color mixing has been applied to the optical mixing ratios of phosphors in approaching to the target chromatic performance. Then, the relation between the optical mixing ratios and the weighting ratios is concluded to an experimental model from a great amount of the realistic datum. Finally, any requested chromatic performance of the phosphor recipe can be precisely predicted by these two steps above. As a result, the chromatic deviation from the quick model to the goal can be well controlled down to less than 0.003 (Δxy). It will also been tested in the practical CCFL production lines about the accurate phosphor mixing recipes.

    第一章 緒論............................1 1.1 前言 ................................1 1.2 研究動機與目的......................4 1.3 論文結構............................6 第二章 基礎理論........................7 2.1 色彩學概論..........................7 2.1.1 色彩的產生及可見光................7 2.1.2 CIE色度系統......................10 2.1.3 色彩混色理論.....................14 2.2 螢光材料簡介.......................15 2.2.1 螢光體能量的激發與吸收...........16 2.2.2 螢光能量的轉換機制...............17 2.2.3 螢光光譜的特性分析...............20 2.2.4 螢光材料的分類及應用.............21 2.3 螢光光源的發光光譜.................23 第三章 研究方法.......................25 3.1 研究流程...........................25 3.2 螢光光源的製作問題.................26 3.3 螢光粉重量混合比例與色彩特性關係...28 第四章 實例應用與討論.................38 4.1 色度座標與螢光粉重量關係模型.......38 4.1.1 冷陰極管的發光光譜...............38 4.1.2 冷陰極管模型的建立...............39 4.1.3 模型的誤差分析...................47 4.2 利用螢光混合色粉的三基色螢光粉添加.49 4.2.1 螢光添加色粉的增加問題.........49 4.2.2 螢光添加色粉的增加方式............49 第五章 結論...........................52 參考文獻................................54

    [1] I. Newton, "A New Theory about Light and Colors, "Philos. Trans. R. Soc. 80, 3075-3087 (1672).
    [2] J. P. Boeuf, "Plasma Display Panels: Physics, Recent Developments and Key Issues," J. Phys. D : Appl. Phys. 36, 53-79 (2003).
    [3] M. E. Crost, "Thin Electron Tube With Electron Emitters at Intersections of Crossed Conductors," United States Patent (United States, 1970), 3500102.
    [4] C. C. Chen, Y. T. Chuang, Y. M. Chen, and T. F. Wu, "Multiphase Multilamp Driving System for LCD Backlight," 2004 PESC 2004 IEEE 35th Annual 3, 1823-1827 (2004).
    [5] D. Jose, R. Stewart, and W. Roach, "A Novel Large Area Color LCD Backlight System," Proc. of the IEEE 1990 National, 275-277 (1990).
    [6] K. Hinotani, S. Kishimoto, and K. Terada, "Flat Fluorescent Lamp for LCD Backlight," International Display Research Conference 1988, 52-55 (1988).
    [7] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, S. L. Rudaz, L. Lighting, and C. A. San Jose, "Illumination with Solid State Lighting Technology," Selected Topics in Quantum Electronics, IEEE J. of 8, 310-320 (2002).
    [8] G. O. Mueller, "White Light Emitting Diodes for Illumination," Proc. SPIE 3938, 30-41 (2000).
    [9] CIE, "Method of Measuring and Specifying Color Rendering Properties of Light Sources," Publication CIE No. 13.2 (Bureau Central CIE, Paris, 1974).
    [10] A. Konno, Y. Yamamoto, and T. Inuzuka, "RGB Color Control System for LED Backlights in IPS‐LCD TVs," 36, 1380-1383 (2005).
    [11] S. Muthu, F. Schuurmans, "Red, Green, and Blue LEDs for White Light Illumination," IEEE Journal On Selected Topics In Quantum Electronics 8, 333-338 (2002).
    [12] N. Narendran and L. Deng, "Color Rendering Properties of LED Light Sources," Solid State Lighting II, Proc. of SPIE 4776, 61-67 (2002).
    [13] E. Radkov, R. Bompiedi, A. M. Srivastava, A. A. Setlur, and C. A. Becker, "White Light with UV LEDs," Proc. of SPIE 5187, 171-177 (2003).
    [14] D. Cull and E. D. Haim, "Syetem and Method To Accomplish High-Accuracy Mixing," United States Patent (United States, 2004), 6795751.
    [15] R. S. Berns, Billmeyer and Saltzman’s Principles of Color Technology (John Wiley & Sons, New York, 2000).
    [16] R. W. G. Hunt, Measuring Colour (Fountain Press, England, 1998).
    [17] R. G. Kuehni, "Color space and its divisions," Color Res. & Appl. 26, 209-222 (2003).
    [18] J. Guild, "The Colorimeteric Properties of the Spectrum," Philos. R. Soc. London 230, 149-187 (1931).
    [19] W. D. Wright, "A Re-determination of the Trichromatic Coefficients of the Spectral Color," Trans. Opt. Soc. London 30, 141-164 (1928).
    [20] W. D. Wright, "A Re-determination of the Mixture Curves of the Spectrum," Trans. Opt. Soc. London 31, 201-218 (1930).
    [21] G. Wyszecki and W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).
    [22] 大田登(著), 陳鴻興, and 陳君彥(譯), 基礎色彩再現工程 (全華, 台灣, 2003).
    [23] H. Grassman, "On the Theory of Compound Colors," Phil. Mag. (Ser.4.) 7, 254-264 (1854).
    [24] J. C. Maxwell and Q. Zaidi, "Theory of the Compound Colors, and the Relations of the Colors of the Spectrum," Color Res. and Appl. 18, 270-287 (1993).
    [25] G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, Berlin, 1994).
    [26] M. Parameswaran, A. M. Robinson, D. L. Blackburn, M. Gaitan, and J. Geist, "Micromachined Thermal Radiation Emitter from a Commercial CMOSprocess," Electron Device Letters, IEEE 12, 57-59 (1991).
    [27] K. Hansen and E. E. B. Campbell, "Thermal Radiation from Small Particles," Physical Review E 58, 5477-5482 (1998).
    [28] D. Jones, "Source of Terrestrial Non-thermal Radiation," Nature 260, 686-689 (1976).
    [29] S. Shionoya and W. M. Yen, Phosphor Handbook (CRC Press., Boca Raton, 1998).
    [30] D. McNaught and A. Wilkinson, IUPAC Compendium of Chemical Terminology (Royal Society of Chemistry, Cambridge, 2000).
    [31] J. F. Hawkes and J. B. Wilson, Optoelectronics: An Introduction (Prentice Hall, Englewood Cliffs, 1989).
    [32] R. C. Millikan and D. R. White, "Systematics of Vibrational Relaxation," J. Chem. Phys. 39, 3209-3213 (2004).
    [33] J. Bernard, "Photon Bunching in the Fluorescence from Single Molecules: A Probe for Intersystem Crossing," J. Chem. Phys. 98, 850-859 (1993).
    [34] S. M. Dancoff and P. Morrison, "The Calculation of Internal Conversion Coefficients," Phys. Rev. 55, 122-130 (1939).
    [35] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, "Light Emitting Device Having a Nitride Compound Semiconductor and a Phosphor Containing a Garnet Fluorescent Material," United States Patent (United States, 1999), 5998925.
    [36] M. Srivastava and W. W. Beers, "Green-Light Emitting Phosphors and Light Sources Using the Same," United States Patent (United State, 2001), 6278135.
    [37] T. F. Soules, W. W. Beers, A. M. Srivastava, L. M. Levinson, and A. R. Duggal, "Light Emitting Device with Phosphor Composition," United States Patent (United States, 2003), 6580097.
    [38] G. Botty, H. T. Hintzen, and J. W. H. van Krevel, "Pigment with Day-Light Fluorescence," United States Patent (United States, 2004), 6682663.
    [39] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms Behind Green Photoluminescence in ZnO Phosphor Powders," J. Appl. Phys. 79, 7983-7990 (1996).
    [40] L. S. Hung, C. W. Tang, and M. G. Mason, "Enhanced Electron Injection in Organic Electroluminescence Devices Using an Al/LiF Electrode," Appl. Phys. Lett. 70, 152-154 (1997).
    [41] H. J. Lozykowski, W. M. Jadwisienczak, and I. Brown, "Visible Cathodoluminescence of GaN Doped with Dy, Er, and Tm," Appl. Phys. Lett. 74, 1129-1131 (1999).
    [42] E. Dieguez, L. Arizmendi, and J. M. Cabrera, "X-ray Induced Luminescence, Photoluminescence and Thermo Luminescence of Bi4Ge3O12," J. Phys. C: Solid State Phys. 18, 4777-4783 (1985).
    [43] 道爾科技, http://www.dott.may.to/.
    [44] F. G. Curtis, and O. W. Patrick, Applied Numerical Analysis, 6th ed. (Addison-Wesley, New York, 1999).

    QR CODE
    :::