跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柳青浩
Ching-Hao Liu
論文名稱: 在雙向一致任意大小的環上之具自我穩定能力之相位同步
Self-stabilizing phase synchronization on bidirectional uniform rings of any size
指導教授: 黃興燦
Shing-Tsaan Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 91
語文別: 英文
論文頁數: 37
中文關鍵詞: 一致環相位同步自我穩定演算法隨機演算法
外文關鍵詞: Randomized algorithm, Uniform ring, Phase synchronization, Self-stabilization
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,我們提出了一個演算法來解決在雙向一致任意大小的環上去同步化相位時鐘的問題。此演算法擁有自我穩定的能力。也就是說,無論在什麼樣的開始設定下,所有處理器的時鐘最終將會有相同的值。
    與以往的隨機演算法的方式解決此一問題不同之處在於,以往的演算法從頭到尾都是倚靠隨機選取的方式,來決定下一時間相位時鐘的值的變化;而我們僅用隨機選取的方式來打破對稱的情況,扣除打破對稱情況的動作外,此系統將非隨機地運作。我們用了72個額外的狀態(排除時鐘變數在外)且最差情況下達到穩定所需的時間為O(n^3)。


    In this thesis, we propose an algorithm to solve the problem of synchronizing phase clock on bidirectional uniform rings of any size. The algorithm has the self-stabilizing ability. That is, no matter under what initial configuration, clocks on every processors will have the same value eventually.
    The difference with previous randomized algorithms is that previous ones are totally randomized to decide the value of phase clock of the next step. We just use randomization to break symmetry. Except symmetry breaking, the system works deterministically. We use 72 additional states(exclude the clock variable) and the stabilizing time in the worst case is O(n^3).

    Chapter 1 Introduction…………………………………………1 Chapter 2 Computational Model……………………………… 4 Chapter 3 Protocol………………………………………………6 3.1 Main concept………………………………………………6 3.2 PFC scheme…………………………………………………6 3.3 Variables………………………………………………… 8 3.4 Tree structure……………………………………………9 3.5 Detailed protocol………………………………………12 3.6 Description of protocol………………………………16 Chapter 4 Correctness Proof…………………………………19 Chapter 5 Complexity Analysis………………………………27 Chapter 6 Conclusions…………………………………………29 References……………………………………………………… 30

    [AD96] G. Alari, A.K. Datta, “Almost Two-State Self-Stabilizing for Token Rings”, IEEE, 1996.
    [ADG91] A. Arora, S. Dolev, M.G. Gouda, “Maintaining Digital Clocks In Step”, Parallel Processing Letters, vol. 1, pp. 11-18, 1991.
    [BDPV98] A. Bui, A.K. Datta, F. Petit, V. Villain, “Space Optimal and fast self-stabilizing PIF in tree networks. Technical Report RR 98-07, LaRIA, University of Picardie Jules Verne, 1998. Submitted.
    [CDPV01] A. Cournier, A.K. Datta, F. Petit, V. Villain, “Self-Stabilizing PIF Algorithm in Arbitrary Rooted Networks”, 21st International Conference on Distributed Computing Systems (ICDCS 2001), pages 91-98, 2001.
    [Cha82] E. Chang, “Echo algorithms:depth parallel operations on general graph”, IEEE Transactions on Software Engineering, SE-8:391, 1982.
    [Dij74] E.W. Dijkstra, "Self Stabilizing Systems in Spite of Distributed Control." Comm. ACM, vol. 17, pp. 643-644, 1974.
    [GH90] M.G. Gouda, T. Herman, “Stabilizing Unison”, Information Processing Letters, vol. 35, pp. 171-175, 1990.
    [Her90] T. Herman, “Probabilistic Self-Stabilization”, Information Processing Letters, 1990.
    [Her01] T. Herman, “A Phase Clock Tutorial”, 2001.
    [HG95] T. Herman and S. Ghosh, "Stabilizing phase-clocks," Information Processing Letters, vol. 54, pp. 259-265, 1995.
    [HL97] S.T. Huang, T.J. Liu, “Four-state stabilizing phase clock for unidirectional rings of odd size”, Information Processing Letters, 1997.
    [HL99a] S.T. Huang, T.J. Liu, “Self-stabilizing 2m-clock for unidirectional rings of odd size”, Distributed Computing, 1999.
    [HL99b] S.T. Huang, T.J. Liu, “Self-stabilizing k-clock for unidirectional rings”, Technical Report, Tsing-Hua University, 1999.
    [Hua93] S.T. Huang. “Leader election in uniform rings”, ACM Transactions on Programming Languages and Systems. v15, n3, p563-573. July 1993.
    [Jia99] J.R. Jiang, “Self-stabilizing, randomized k-value unison clocks for unidirectional uniform rings,” in Proceedings of 11th International Conference on Parallel and Distributed Computing and Systems, Boston, MA, Nov. 1999.
    [Kes88] J. L. W. Kessels. “An exercise in proving self-stabilization with a variant function”, Information Processing Letters.29 , p39-42, 1988.
    [LH01] T.J. Liu, S.T. Huang, “Phase Synchronization on Asynchronous Uniform Rings with Odd Size”, IEEE Transaction on Parallel and Distributed Systems, vol. 12, no. 6, June, 2001.
    [LS95] C. Lin and J. Simon, "Possibility and Impossibility Results for Self-Stabilizing Phase Clocks on Synchronous Rings," In Proc. of 2nd Workshop on Self-Stabilizing Systems, pp. 10.1-10.15, 1995.
    [MOY96] A. Mayer, R. Ostrovsky, M. Yung, “Self-Stabilizing Algorithms for Synchronous Unidirectional Rings”, 1996.
    [Seg83] A. Segall. “Distributed network protocols”, IEEE Transactions on Information Theory, IT-29:23, 1983.

    QR CODE
    :::