跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾鑛傑
Kuang-Jie Zeng
論文名稱: 利用泛星深度巡天計畫探討Ia型超新星宿主星系性質
The Host Galaxies of Type Ia Supernovae Discovered by the Pan-STARRS1 Medium Deep Survey
指導教授: 潘彥丞
Yen-Chen Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 70
中文關鍵詞: Ia型超新星前身系統宿主星系高紅移
外文關鍵詞: Type Ia supernovae, progenitor system, host-galaxy, high-redshift
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 已知Ia型超新星被視為標準燭光,拿來作為探測星系距離以及宇宙膨脹的工具。但它
    們爆炸的前身系統直到了現今都不確定,而宿主星系為其前身系統的環境且已證明是
    探知前身系統的途徑。 本研究主要利用泛星深度巡天計畫,找出約兩百多顆高紅移
    的Ia型超新星的宿主星系(紅移的中位數在0.3)。 我們研究了這些超新星整體與區域的
    宿主星系性質(區域為超新星爆炸位置半徑1.5”的範圍),例如恆星質量、恆星形成率和特徵恆星形成率,藉由這些參數來跟超新星光變曲線的寬度、超新星的顏色和超新星哈伯常數殘數做比較,並與先前的低紅移宿主星系研究(紅移中位數在0.05)來做比較。我們發現在宿主星系的整體環境中,星系的恆星質量和特徵恆星形成率與Ia型超新星的光度曲線寬有明顯趨勢 (在恆星質量上有6.9個標準差以及線性擬合出100%的負斜率,在特徵恆星形成率上有8.139個標準差及線性擬合出100%的正斜率),這些趨勢與先前低紅移星系的研究一致。 而在超新星Ia的顏色跟整體宿主星系恆星形成率的趨勢則與先前低紅移研究不同,低紅移研究並無發現趨勢,但本研究有發現微弱的趨勢,本研究線性擬合給出星系的恆星形成率與超新星顏色有95.5%的負斜率趨勢。 而在哈伯殘數跟Ia型超新星的關係上也跟先前的研究一致,不管是整體宿主星系的恆星質量、恆星形成率和特徵恆星形成率與哈伯殘數都沒有趨勢。 除了整體宿主星系的性質,宿主星系區域的恆星形成率與Ia超新星的顏色及哈伯殘數有趨勢,其顏色的線性擬合有100%為負而哈伯殘數有98.75%為負的,在區域的特徵恆星形成率則與Ia的光度曲線寬和顏色有趨勢,(光度曲線寬有4.227個標準差及線性擬合出99.5%正的斜率,顏色有3.196個標準差以及線性擬合出100%的負斜率)。 在區域宿主星系的參數與Ia的哈伯殘數比較中,區域星系的恆星形成率可以看到有相關聯性,由線性擬合出來有98.75%的負斜率,這些結果顯示區域宿主星系的參數可能在未來有機會取代整體宿主星系的參數來作為了解Ia型超新星前身的一個重要工具。


    Type Ia supernovae (SNe Ia) are standardizable candles frequently used to probe cosmic expansion. However, their progenitor system and explosion mechanism remain unclear. The host-galaxy environment has been proven to be a valuable avenue for investigating the nature of SN Ia explosions. In this thesis, we study the host galaxies of approximately 200 high-redshift (medium z=0.3) SNe Ia discovered by the Pan-STARRS1 Medium Deep Survey (PS1-MDS). We determined the global and local (1.5” radius from SNe Ia) host galaxy stellar mass, star-formation rate (SFR), and specific star-formation rate (sSFR), examining their relation to SN Ia properties and compared our results with that of lowredshift research (medium z=0.05). This research aims to explore whether host parameters have a correlation with SNe Ia light-curve width (x1), color, and Hubble residual. We found significant correlations between host-galaxy stellar mass and sSFR with SN x1 (6.9 sigma and 100% negative slope for stellar mass, and 8.139 sigma and 100% positive slope for sSFR), which are consistent with low-redshift studies. For the comparison between SNe Ia color and SFR, we found a mild trend (95.5% negative slope), which is different from the low-redshift studies. For the comparison between Hubble residual and global host parameters, we do not see any trend, which is align with previous research. For the local host-galaxy properties, there is significant trend between local SFR and SN color and Hubble residual (100% negative slope for color, and 98.75% negative slope for Hubble residual). There is trend between local sSFR and x1 (4.227 sigma and 99.5% positive slope), which is consistent with the global result. There is also a trend between local sSFR and color (3.196 sigma and 100% negative slope), but this trend is not seen in the relation between global sSFR and SN color. Notably, we observed a trend between local SFR and the Hubble residual, which was not seen by previous global studies. This may suggest that the local host-galaxy environment may be promising in replacing the global host-galaxy properties to improve the scatter of Hubble diagram in the future.

    Contents Authorisation of the Electronic Thesis i Recommendation Letter from the Thesis Advisor iii Verification from the Oral Examination Committee v 中文摘要 vii Abstract ix Acknowledgements xi List of Figures xiii List of Tables xv 1 INTRODUCTION 1 1.1 Type Ia supernova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 SN Ia progenitor systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 SN Ia Host-galaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 OBSERVATIONS AND DATA REDUCTION 13 2.1 Pan-STARRS1 observations . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Host galaxy parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 SED model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 RESULTS 21 3.1 Host-galaxy parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 The dependence of SN Ia properties on the host galaxy . . . . . . . . . . . 22 3.2.1 Host-galaxy stellar mass . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 Host-galaxy SFR & sSFR . . . . . . . . . . . . . . . . . . . . . . 24 3.3 Comparison between GLOBAL & LOCAL host-galaxy properties . . . . . 26 3.3.1 GLOBAL & LOCAL stellar mass . . . . . . . . . . . . . . . . . . . 26 3.3.2 GLOBAL & LOCAL SFR & sSFR . . . . . . . . . . . . . . . . . . 27 4 DISCUSSIONS 39 4.1 THE GLOBAL HOST-GALAXY PROPERTIES . . . . . . . . . . . . . . 40 4.1.1 Relation betweem x1&c and host parameters . . . . . . . . . . . . . 40 4.1.2 HUBBLE RESIDUAL . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 THE LOCAL HOST-GALAXY PROPERTIES . . . . . . . . . . . . . . . 44 4.2.1 Relation between x1&c and host parameters . . . . . . . . . . . . . 44 4.2.2 HUBBLE RESIDUAL . . . . . . . . . . . . . . . . . . . . . . . . . 45 5 CONCLUSION 47 Bibliography 51

    Bibliography
    Arnett W. D., 1969, Ap&SS, 5, 180
    Baade W., Zwicky F., 1934, Contributions from the Mount Wilson Observatory, 3, 73
    Betoule M., et al., 2014, Astronomy & Astrophysics, 568, A22
    Brahe T., Kepler J., 1602, Tychonis Brahe Astronomiae instauratae progymnasmata : quorum haec prima pars de restitutione motuum SOLIS et lunae stellarumque inerrantium tractat, et praeterea de admiranda nova stella anno 1572 exorta luculenter agit., doi:10.3931/e-rara-9489.
    Branch D., Tammann G. A., 1992, ARA&A, 30, 359
    Chambers K. C., et al., 2019, The Pan-STARRS1 Surveys (arXiv:1612.05560)
    Conley A., et al., 2008, The Astrophysical Journal, 681, 482
    Conroy C., Gunn J. E., 2010, ApJ, 712, 833
    Conroy C., Gunn J. E., White M., 2009, The Astrophysical Journal, 699, 486–506
    ESA/Hubble & NASA D. Sand R. J. F., 2024, Hubble Measures the Distance to a Supernova, https://science.nasa.gov/missions/hubble/hubble-measures-the-distance-to-a-supernova/
    Filippenko A. V., et al., 1992a, AJ, 104, 1543
    Filippenko A. V., et al., 1992b, ApJ, 384, L15
    Gaskell C. M., Cappellaro E., Dinerstein H. L., Garnett D. R., Harkness R. P., Wheeler J. C., 1986, ApJ, 306, L77
    Hamuy M., Phillips M. M., Maza J., Suntzeff N. B., Schommer R. A., Aviles R., 1995, AJ, 109, 1
    Hamuy M., Phillips M. M., Suntzeff N. B., Schommer R. A., Maza J., Aviles R., 1996, AJ, 112, 2391
    Hamuy M., Trager S. C., Pinto P. A., Phillips M. M., Schommer R. A., Ivanov V., Suntzeff N. B., 2000, AJ, 120, 1479
    Higson E., Handley W., Hobson M., Lasenby A., 2018, Statistics and Computing, 29, 891–913
    Hoeflich P., Khokhlov A., 1996, The Astrophysical Journal, 457, 500
    Homeier D., Koester D., Hagen H. J., Jordan S., Heber U., Engels D., Reimers D., Dreizler S., 1998, A&A, 338, 563
    Howell D. A., 2001, The Astrophysical Journal, 554, L193–L196
    Hoyle F., Fowler W. A., 1960, ApJ, 132, 565
    Huterer D., Turner M. S., 1999, Physical Review D, 60 Iben I. J., Tutukov A. V., 1984, ApJS, 54, 335
    Jha S., Riess A. G., Kirshner R. P., 2007, The Astrophysical Journal, 659, 122
    Johnson B. D., 2019, SEDPY: Modules for storing and operating on astronomical source spectral energy distribution, Astrophysics Source Code Library, record ascl:1905.026
    Jones D. O., et al., 2018, The Astrophysical Journal, 867, 108
    Kaiser N., et al., 2002, in Tyson J. A., Wolff S., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 4836, Survey and Other Telescope Technologies and Discoveries. pp 154–164, doi:10.1117/12.457365
    Kaiser N., et al., 2010, in Stepp L. M., Gilmozzi R., Hall H. J., eds, Society of PhotoOptical Instrumentation Engineers (SPIE) Conference Series Vol. 7733, Ground-based and Airborne Telescopes III. p. 77330E, doi:10.1117/12.859188
    Kaufman M., 1976, Ap&SS, 40, 369
    Kelly P. L., Hicken M., Burke D. L., Mandel K. S., Kirshner R. P., 2010, ApJ, 715, 743
    Kessler R., et al., 2009, ApJS, 185, 32
    Kuchner M. J., Kirshner R. P., Pinto P. A., Leibundgut B., 1994, ApJ, 426, L89
    Lampeitl H., et al., 2010, The Astrophysical Journal, 722, 566
    Li W., Filippenko A. V., Treffers R. R., Riess A. G., Hu J., Qiu Y., 2001, The Astrophysical Journal, 546, 734
    Maeda K., Terada Y., 2016, International Journal of Modern Physics D, 25, 1630024
    Minkowski R., 1941, PASP, 53, 224
    Nugent P. E., et al., 2011, Nature, 480, 344–347
    Palicio P. A., Matteucci F., Della Valle M., Spitoni E., 2024, A&A, 689, A203
    Pan Y.-C., et al., 2013, Monthly Notices of the Royal Astronomical Society, 438,
    1391–1416
    Perlmutter S., et al., 1999, ApJ, 517, 565
    Phillips M. M., 1993, ApJ, 413, L105
    Phillips M. M., Lira P., Suntzeff N. B., Schommer R. A., Hamuy M., Maza J., 1999, The Astronomical Journal, 118, 1766
    Rest A., et al., 2014, The Astrophysical Journal, 795, 44
    Riess A. G., Press W. H., Kirshner R. P., 1996, ApJ, 473, 88
    Riess A. G., et al., 1998, The Astronomical Journal, 116, 1009
    Riess A. G., et al., 2007, ApJ, 659, 98
    Scolnic D., et al., 2014, The Astrophysical Journal, 795, 45
    Scolnic D. M., et al., 2018, The Astrophysical Journal, 859, 101
    Speagle J. S., 2020, MNRAS, 493, 3132
    Sullivan M., et al., 2006, ApJ, 648, 868
    Sullivan M., et al., 2010, MNRAS, 406, 782
    Sullivan M., et al., 2011, ApJ, 737, 102
    Suzuki N., et al., 2012, The Astrophysical Journal, 746, 85
    Taubenberger D. S., 2009, D¨ustere Supernova erhellt Gammablitze, https://www.mpg. de/582261/pressemitteilung20090602
    Tripp R., 1998, A&A, 331, 815
    Turatto M., 2003, in Weiler K., ed., , Vol. 598, Supernovae and Gamma-Ray Bursters. pp 21–36, doi:10.1007/3-540-45863-8˙3
    Villar V. A., et al., 2019, The Astrophysical Journal, 884, 83
    Wheeler J. C., Harkness R. P., 1990, Reports on Progress in Physics, 53, 1467
    Whelan J., Iben Icko J., 1973, ApJ, 186, 1007
    van den Bergh S., 1988, JRASC, 82, 179

    QR CODE
    :::