| 研究生: |
劉昱宏 Yu-hung Liu |
|---|---|
| 論文名稱: |
可應用於高溫操作之鍺量子點單電洞電晶體之製程開發與評估 Process Development and Evaluation of Germanium Quantum Dot Single Hole Transistor for High-temperature Operation |
| 指導教授: |
李佩雯
Pei-wen Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 鍺量子點 、單電洞電晶體 、選擇性沉積 |
| 外文關鍵詞: | Ge QD, single hole transistor, selective deposition |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著 CMOS 關鍵製程技術不斷微縮,現今已快接近物理的極限,因此許多奈米元件越來越受到重視,其中單電子/電洞電晶體結合了小尺寸、高操作速度與低消耗功率等優點,所以單電子/電洞電晶體為大家所矚目的元件之一。本論文致力於關鍵製程模組開發與評估,將其應用於可在高溫下操作之單電洞電晶體。欲製作出在高溫下操作之單電洞電晶體,最關鍵之處在於鍺量子點尺寸及位置上地控制以及如何精準地控制三端介電層的薄膜厚度。
因在關鍵製程模組開發上遇到一些瓶頸,導致元件最後無法順利完成。故藉學長所製作出”利用氮化矽作為穿隧接面之鍺量子點單電洞電晶體”來學習電性量測與分析,以及更進一步地利用此元件做脈衝量測分析,來觀察電洞進出鍺量子點的傳輸行為模式及元件的操作速度,期望未來可應用於高頻元件發展上面。
As the dramatic scaling of key modules of CMOS technology, the feature sizes of Si CMOS devices are close to their physical limitation. Therefore, nano-devices attract more attentions in nowadays. Single electron/ hole transistors (SETs/SHTs) combine the potentials of small dimension, high operating speed and low power consumption. Thereby, SETs/SHTs become one of the devices that people look forward to. This thesis dedicates and focuses on the process development and evaluation of Ge QD SHT for high-temperature operation. The key modules of SHT for high-temperature operation are the precise control of Ge QD size, position and the dielectric thickness between gate, source, and drain electrode.
Due to the bottleneck of process development, the SHTs could not be realized. Thereby, this thesis used the devices of a senior’s project—“Fabrication and Electrical characterization of Germanium QD Single Hole Transistor with Si3N4 tunnel junction” to learn the measurement and characteristics of SHTs. Moreover, this thesis also characterized the operation speed and transportation mechanism of holes into a Ge QD using a pulse measurement for high-frequency applications in future work.
參考文獻
[1] K. K. Likharev, “Correlated discrete transfer of single electrons in ultrasmall tunnel junctions,” IBM Journal of Research and Development, 32, 144, (1988).
[2] T. A. Fulton and G.J. Dolan, “Observation of single-electron charging effects in small tunnel junctions,” Physical Review Letters, 59, 109, (1987).
[3] Susan J. Angus, Andrew J. Ferguson, Andrew S. Dzurak and Robert G. Clark, “Gate-defined quantum dots in intrinsic silicon,” Nano Letters, 7, 2051, (2007).
[4] S. J. Shin, C. S. Jung, B. J. Park, T. K. Yoon, J. J. Lee, S. J. Kim, J. B. Choi, Y. Takahashi and D. G. Hasko, “Si-based ultrasmall multiswitching single-electron transistor operating at room-temperature,” Applied Physics Letters, 97, 103101, (2010).
[5] W. T. Lai, David M. T. Kuo and P. W. Li, “Transient current through a single germanium quantum dot,” Physical E, 41, 886, (2009).
[6] I. H. Chen, K. H. Chen, W. T. Lai and P. W. Li, “Single Ge quantum dot placement along with self-aligned electrodes for effective management of single charge tunneling,” IEEE Transactions on Electron Devices, 59, 3224, (2012).
[7] International Technology Roadmap for Semiconductors, “Emerging Research Devices,” (2013)
[8] M. Saitoh, H. Harata and T. Hiramoto, “Room-temperature demonstration of integrated silicon single-electron transistor circuit for current switching and analog pattern matching.” IEDM Technical Digest, 187, (2004).
[9] K. Yano, T. Ishii, T. Sano, T. Mine, F. Murai, T. Hashimoto, T. Kobayashi, T. Kure and K. Seki, “Single-electron memory for giga-to-tera bit storage” Proceedings of the IEEE, 87, 633, (1999).
[10] 周信宏, “利用氮化矽作為穿隧接面之鍺量子點單電洞電晶體之製作與特性分析”,碩士論文,國立中央大學,民國99年
[11] Michael Quirk and Julian Serda, “Semiconductor Manufacturing Technology,” Chapter 6.
[12] Lei Zhuang, Lingjie Guo and Stephen Y. Chou, “Silicon single-electron quantum-dot transistor switch operating at room-temperature,” Applied Physics Letters, 72, 1205, (1998).
[13] B. H. Choi, S. W. Hwang, I. G. Kim, H. C. Shin, Yong Kim and E. K. Kim, “Fabrication and room-temperature characterization of a silicon self-assembled quantum-dot transistor,” Applied Physics Letters, 73, 3129, (1998).
[14] H. Ishikuro and T. Hiramoto, “Quantum mechanical effects in the silicon quantum dot in a single-electron transistor,” Applied Physics Letters, 71, 3691, (1997).
[15] Y. Ono, Y. Takahashi, M. Yamazaki, M. Nagase, H. Namatsu, K. Kurihara and K. Murase, “Fabrication method for IC-oriented Si twin island single electron transistors,” IEDM Technical Digest, 123, (1998).
[16] C.Y. Chien, W. T. Lai, Y. J. Chang, C. C. Wang, M. H. Kuo and P. W. Li, “Size tunable Ge quantum dots for near-ultraviolet to near-infrared photosensing with high figures of merit,” Nanoscale, 6, 5303, (2014).
[17] M.H. Kuo, C. C. Wang, W. T. Lai, Tom George and P. W. Li, “Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance,” Applied Physics Letters, 101, 233107, (2012).
[18] K. H. Chen, C. C. Wang, Tom George and P. W. Li, “The role of Si interstitials in the migration and growth of Ge nanocrystallites under thermal annealing in an oxidizing ambient,” Nanoscale, 9, 339, (2014)
[19] 廖柏翔, “高濃度矽鍺量子點/矽奈米柱異質結構光偵測器之研製與光電性分析”,碩士論文,國立中央大學,民國101年
[20] I. H. Chen, W. T. Lai and P. W. Li, “Realization of solid-state nanothermometer using Ge quantum-dot single-hole transistors in few-hole regime” Applied Physics Letters, 104, 243506, (2014).