| 研究生: |
黃大鎔 Da-Rong Huang |
|---|---|
| 論文名稱: |
改良式模糊粒子群演算法及其在螺旋電感最佳化設計之應用 Adaptive Weighted Fuzzy Particle Swarm Optimization and Its Application on the Design of the Spiral Inductor |
| 指導教授: |
莊堯棠
Yau-Tarng Juang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 粒子群演算法 、最佳化方法 、模糊理論 、螺旋電感 |
| 外文關鍵詞: | PSO, optimization, fuzzy, spiral inductor |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中,我們提出了一種改良式的粒子群演算法,名為改良式模糊粒子群演算法AWFPSO (Adaptive Weighted Fuzzy Particle Swarm Optimization),將使用模糊規則調適加速因子(C_(1 )、C_2)的AFPSO (Adaptive Fuzzy Particle Swarm Optimization)以及使用歸屬函數當作粒子權重的FPSO (Fuzzy Particle Swarm Optimization)作結合,並且應用在射頻積體電路(Radio Frequency Integrated Circuits,RFIC)的螺旋(Spiral)電感之最佳化設計。藉由模糊理論來調適粒子群演算法的加速因子,目的是希望能不斷的拓展搜索範圍以及找尋新的最佳解。並且參考最佳粒子以外第二好、第三好等粒子的搜尋經驗納入考慮,使其方法能改善傳統的粒子群演算法提早落入區域最佳解的缺點。另外,為了能分析所提出的演算法效能以及適用性,我們使用16種標準測試函數來模擬並且與數十種不同的粒子群演算法做比較。經由模擬結果顯示,本論文提出的方法確實能有效的改善原始PSO (Particle Swarm Optimization)的性能,並且應用於螺旋電感上能有效提升品質因數。
In this thesis, we propose a variant algorithm for Particle Swarm Optimization (PSO) which is called Adaptive Weighted Fuzzy Particle Swarm Optimization (AWFPSO). The algorithm combines two methods: AFPSO which uses fuzzy rules to adjust the acceleration parameters of PSO, and FPSO which manipulates membership function values to obtain weights. We also take the second best particle into consideration to prevent the AWFPSO from falling into local optimum too earlier. The performance of AWFPSO is compared with several PSO algorithms in the literature by utilizing sixteen benchmark functions. Finally, we apply AWFPSO to optimizing the design of the spiral inductor of Radio Frequency Integrated Circuits (RFIC). From experimental results, the proposed method improves the performance of RFIC by enhancing the quality factor of the designed spiral inductor.
[1] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” In Proceedings of IEEE International Conference on Neural Networks, Vol. 4, pp. 1942-1948, 1995.
[2] Y. Shi and R. C. Eberhart, “Particle Swarm Optimization:Development, Applications and Resource,” In Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1, pp. 81-86, 2001.
[3] W. D. Chang and S. P. Shih, “PID controller design nonlinear systems using an improved particle swarm optimization approach,” Communication Nonlinear Science and Numerical Simulation, Vol. 15, pp. 3632-3639, 2010.
[4] R. A. Krohling and L. S. Coelho, “Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problem,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , Vol. 36, No. 6, pp. 1407-1416, 2006.
[5] G. Zeng and Y. Jiang, “A Modified PSO Algorithm with Line Search,” 2010 International Conference on Computational Intelligence and Software Engineering, pp. 1-4, 2010.
[6] H. Babaee and A. Khosravi, “An Improve PSO Based Hybrid Algorithms,” 2011 International Conference on Management and Service Science, pp. 1-5, 2011.
[7] S. Y. Ho, H. S. Lin, W. H. Liauh, and S. J. Ho, “OPSO: Orthogonal particle swarm optimization and its application to task assignment problems,” IEEE Transactions on Man and Cybernetics, Part A: Systems and Humans, Vol. 38, No. 2, pp. 288-298, 2008.
[8] Y. Shi and R. C. Eberhart, “Parameter Selection in Particle Swarm Optimization,” Evolutionary Programming VII, Vol. 1447, pp. 591–600, 1998.
[9] M. Clerc, “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” Proceedings of the Congress on Evolutionary Computation, Vol. 3, pp. 1951−1957, 1999.
[10] N. M. Kwok, D. K. Liu, K. C. Tan, and Q. P. Ha, “An Empirical Study on the Settings of Control Coefficients in Particle Swarm Optimization,” IEEE Congress on Evolutionary Computation, pp. 823-830, 2006.
[11] M. Clerc and J. Kennedy, “The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, pp. 58-73, 2002.
[12] J. Jie, J. zeng, C. Han, and Q. Wang, “Knowledge-based cooperative particle swarm optimization,” Applied Mathematics and Computation, Vol. 205, pp. 861-873, 2008.
[13] A. M. Elbar, S. Abdelshahid, and D. C. Wunsch, “Fuzzy PSO: a generalization of particle swarm optimization,” 2005 IEEE International Neural Networks, Vol. 2, pp.1086–1091, 2005.
[14] Y. Juang, S. Tung, and H. Chiu, “Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions,” Information Sciences, 2010.
[15] J. Kennedy, R. C. Eberhart, and Y. Shi, “Swarm intelligence,” Morgan Kaufmann Publishers, San Francisco, 2001.
[16] Y. Shi and R. C. Eberhart, “Evolutionary Programming VII, Parameter Selection in Particle Swarm Optimization,” Springer Berlin Heidelberg, Vol. 1447, pp. 591–600, 1998.
[17] Y. Shi and R. C. Eberhart, “Empirical Study of Particle Swarm Optimization,” Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, pp. 1945-1950, 1999.
[18] I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter selection,” Elsevier Science B.V., Vol. 85, pp. 317-325, 2003.
[19] L. A. Zadeh, “Fuzzy sets,” Information and Control, Volume 8, Issue 3, Pages 338-353 ,June 1965.
[20] G. K. Venayagamoorthy and S. Doctor, “Navigation of Mobile Sensors Using PSO and Embedded PSO in a Fuzzy Logic Controller,” Industry Applocations Conference. 39th IAS Annual Meeting Conference Record of the 2004 IEEE, pp. 1200-1206, 2004.
[21] Eugenio Aguirre and Antonio González, “Fuzzy behaviors for mobile robot navigation: design, coordination and fusion,” International Journal of Approximate Reasoning,Volume 25, Issue 3, Pages 255-289, November 2000.
[22] 王文俊,認識Fuzzy,全華出版,第三版,2007。
[23] A. M. Abdelbar, S. Abdelshahid, and D. C. Wunsch, “Gaussian Versus Cauchy Membership Functions in Fuzzy PSO,” Proc. IEEE Conference on Neural Networks (IJCNN 2007), IEEE Press, August, 2007
[24] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger, and S. Tiwari, "Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization," Technical Report, Nanyang Technological University, Singapore, May 2005 and KanGAL Report #2005005, IIT Kanpur, India, 2005.
[25] N. Iwasaki, K. Yasuda, and G. Ueno, “Dynamic parameter tuning of particle swarm optimization,” IEEE Transactions on Electrical and Electronic Engineering, pp. 353-363, 2006.
[26] M. A. Montes de Oca, J. Pena, T. Stutzle, C. Pinciroli, and M. Dorigo, “Heterogeneous particle swarm optimizers,” IEEE Congress on Evolutionary Computation, pp. 698–705, 2009.
[27] M. Pant, T. Radha, and V. P. Singh, “A New Particle Swarm Optimization with Quadratic Interpolation,” International Conference on Computational Intelligence and Multimedia Applications, pp. 55-60, 2007.
[28] K. E. Parsopoulos and M. N. Vrahatis, “UPSO: a unified particle swarm optimization scheme,” In Lecture series on Computer and Computational Sciences, Vol. 1, pp. 868-873, 2004.
[29] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm:simpler, maybe better,” IEEE Transactions on Evolutionary Computation, Vol. 8, pp. 204-210, 2004.
[30] J. J. Liang and P. N. Suganthan, “Dynamic multi-swarm particle swarm optimizer,” In Proceedings of IEEE on Swarm Intelligence Symposium, pp. 124-129, 2005.
[31] J. Hu, J. Zeng, and Y. Yang, “A two-order particle swarm optimization model and the selection of its parameters,” The Sixth World Congress on Intelligent Control and Automation, pp. 3440, 3445, 2006.
[32] 陳珈妤,「快速平衡粒子群最佳化方法」,國立中央大學,碩士論文,民國100年。
[33] 蔡憲文,「以時變學習因子策略改良粒子群演算法」,國立中央大學,碩士論文,民國99年。
[34] A. Chatterjee and P. Siarry, “Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization,” Computers and Operations Research, Vol. 33, No. 3, pp. 859-871, 2004.
[35] 吳讚展,「自調整非線性慣性權重粒子群演算法」,國立中央大學,碩士論文,民國101年。
[36] 李憲昌,「維度經驗重心分享粒子群演算法」,國立中央大學,碩士論文,民國102年。
[37] 顏淯翔,「改良式粒子群方法之影像追蹤系統應用」,國立中央大學,碩士論文,民國103年。
[38] 王鈺潔,「自適應解分享粒子群演算法及其在螺旋電感最佳化設計之應用」,國立中央大學,碩士論文,民國104年。
[39] Y. Cao, R. A. Groves, X. Huang, N. D. Zamdmer, J. O. Plouchart, R. A. Wachnik, T. J. King, and C. Hu, “Frequency-independent equivalent-circuit model for on-chip spiral inductors,” IEEE Journal of Solid-State Circuit, Vol. 38, No. 3, pp. 419-426, 2003.
[40] 江世華,「超寬頻低雜訊放大器設計」,國立台北科技大學,碩士論 文,民國101年。
[41] C. P. Yue and S.S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF IC's,” 1997 Symposium on VLSI Circuits, pp. 85,86, 12-14, 1997.
[42] C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE Trans. Electron Devices, vol. 47, pp. 560–568, Mar. 2000.
[43] Y. K. Koutsoyannopoulos and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. on Circuits and Systems-II:Analog and Digital Signal Processing, vol. 47, pp. 699–713, August 2000.
[44] S. Jenei, B. K. J. C. Nauwelaers, and S. Decoutere, “Physicsbased closed-form inductance expression for compact modeling of integrated spiral inductors,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 77–80, Jan. 2002.
[45] S. K. Mandal, A. Goyel, and A. Gupta, “Swarm optimization based on-chip inductor optimization,” 4th International Conference on Computers and Devices for Communication, pp. 1, 4, 14-16, 2009.
[46] Y. Guo and Q. Cao, “Analysis and design of spiral inductor based on the particle swarm optimization algorithm,” 2010 International Conference on Microwave and Millimeter Wave Technology, pp. 734, 736, 8-11, 2010.