| 研究生: |
王崑琳 Kuen-lin Wang |
|---|---|
| 論文名稱: |
儲氫合金顆粒床有效熱傳導係數量測實驗 |
| 指導教授: |
鍾志昂
Chih-ang Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 儲氫合金顆粒床 、有效熱傳導係數 、溫度 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究為儲氫合金顆粒床有效熱傳導係數量測實驗。實驗利用一維軸向熱傳系統量測儲氫合金LaNi5的熱傳導係數,實驗內容主要著重於觀察儲氫床溫度對熱傳導係數之影響,因此實驗開始前會調整儲氫床的平均溫度接著固定相同供氫壓力的方式去進行-30、40、50℃三組不同的溫度參數之實驗。
實驗結果顯示,儲氫合金熱傳導係數主要受以下兩者機制所影響,儲氫量與氣體之熱傳導係數,當儲氫床之溫度提昇時合金顆粒間氣體的熱傳導係數會與之提升,但同時溫度的提升將使平衡壓上升導致儲氫量下降,造成整體熱傳導係數下降,而由結果推論可得前者的影響機制較後者為強,導致儲氫床溫度提升時整體熱傳導係數上升。
This research presents experimental investigation of the effective thermal conductivity of a hydride metal bed. Experiments were performed using one-dimensional axial heat transfer systems to measure the effective thermal conductivity of the LaNi5 hydrogen storage alloy. The experiments mainly focused on the effects of temperature on the thermal conductivity. By adjusting the average temperature of the alloy bed, the effective thermal conductivity was measured at three temperatures of 30、40、50 ℃, respectively with fixed hydrogen supply/back pressures. The effective thermal conductivities at different temperatures were compared.
Results from the experiments show that the effective thermal conductivity of the LaNi5 hydride alloy increased with increasing temperature. This scenario may be attributable to the following two mechanisms: (1) the thermal conductivity of the hydrogen gas in the pores of the bed increased with temperature, (2) the hydrogen content decreased with increasing temperature, in turn causing the effective thermal conductivity to decline. As the effective thermal conductivity of the LaNi5 hydride alloy as a whole increased with temperature. The former mechanism was conjectured to be more profound than the latter within the temperature range considered.
Dedrick, D.E.,Kanouff, M.P., Replogle, B.C.,Gross, K,J., “Thermal properties characterization of sodium alantes, ”Journal of Alloys and Conpounds, Vol.389, pp.299-305, 2005.
Incrropera, P. F., Dewitt, P. D., Bergman, L. T., Lavine, S. A., “Fundamentals of Heat and Mass Transfer, Sixth Edition,” Wiley Asia Student Edition, pp.A-17, 2005.
Flueckiger, S., Voskuilen, T., Pourpoin, T., Fisher, T. S. and Zheng, Y., “In situ characterization of metal hydride thermal transport properties,” International Journal of Hydrogen Energy, Vol.35, pp.614-621, 2010.
Hahne, E. and Kallweit, J., “Thermal Conductivity of Metal Hydride Materials for Strage of Hydrogen: Experimental Investigation,” International Journal of Hydrogen Energy, Vol.23, No.2, pp.107-114, 1998.
Ishido, Y., Kawamura, M. and Ono, S., “Thermal Conductivity of Magnesium-Nickel Hydride Power Beds in a Hydrogen Atmosphere,” InternationalJournal of Hydrogen Energy, Vol.7, No.2, pp.173-182. 1982.
Kempf, A. and Martin, W. R. B., “Measurement of The Thermal Properties of TiFe0.85Mn0.15and Its Hydrides,” International Journal of Hydrogen Energy, Vol. 11, pp.107-116, 1986
Kapischke, J., Jobst, H., “Measurement of the effective thermal conductivity of a metal hydride bed with chemical reaction, ” Experimental thermal and fluid science,Vol 9, No.3, pp.337-344.1994.
Kumar,E. A., Maiya, M. P. and Murthy, S. S., “Measurement and Analysis of Effictive Thermal Conductivity of MmNi4.5Al0.5 Hydride Bed,” Industrial & Engineering Chemistry Research, 2011.
Mustafaev, R. A.,“Hot-Wire Method in a Nonstationary Variation,” Translated from Inzhenerno-Fizicheskii Zhurnal, Vol.31, No.5, pp.821-825, 1976.
Nagel, M., Komazaki, Y., Suda, S., “Effective thermal conductivity of a metal hydride bed augmented with a copper wire matrix, ” Journal of the Less-Common Metals, Vol.120,No.2,pp.35-43, 1986.
Pebler, A. and Gulbransen, E.A., “Equilibrium Studies on the Systems ZrCr2-H2,ZrV2-H2 and ZrMo2-H2 Between 0℃and 900℃,” Trans. Metall. Vol.239, pp.1593, 1967.
Reilly, J.J., Wiswall, R.H., “The Reaction of Hydrogen with Alloys of Magnesium andNickel and the Formation of Mg2NiH4,” Inorganic Chemistry, Vol.7, pp.2254, 1968.
Reilly, J.J., Wiswall, R.H., “Formation and Properties of Iron Titanium Hydride,”Inorganic Chemistry, Vol.13, pp.218, 1974.
Sieverts, A., “The Absorption of Gases by Metals,” Zeitschrift für Metallkunde, Vol.21, pp.37-36, 1929.
Stadard Test Methodfor Thermal Conductivity of Solids by Means of the Graded-Comparative-Longitudinal Heat Flow Technique. ASTM E1225-09, ASTM International: West Conshohocken, PA, DOI:10.1520/E1225-09, 2009.
Suda, S., Kobatashi, N., Yoshida, K., “Thermal Conductivity in Metal Hydride Beds,” International Association for Hydrogen Energy, Vol.6, No.5, pp.521-528, 1981.
Suissa, E., Jacob, I., Hadari, Z., “Experimental measurement and general conclusions on the effective thermal conductivity of powdered metal htdrides,” Journal of Less-Common Metal, Vol.104, pp.287-295, 1984.
Sun, D. W. and Deng, S. J., “Theoretical Model Predicting the Effective Thermal Conductivity in Powder Metal Hydride Beds,” Vol.15, No.5, pp.331-336, 1990.
Vucht,J.H.N.,Kuijpers,F.A.,Bruning, H.C.A.M., “Reversible Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds,” Philips Res. Repts., Vol.25, p.133, 1970.
White, F. M., “Viscous Fluid Flow, Third Edition,” McGraw-Hill International Edition, InternationalJournal of Hydrogen Energy, pp.46, 2006.
Wang, C. Y., Tien, H. C., Chyou, S. D., Huang, N. N. and Wang, S. H., “Hydrogen absorption/desorption in a metal hydride reactor accounting for varied effective thermal conductivity,” Journal of Marine Science and Technology, Vol.19, No.2, pp.168-175, 2011.
廖世傑,儲氫技術及應用簡介,工業材料,Vol.190,pp.129,2002。
曲新生、陳發林,氫能技術,五南書局,2006。
胡子龍,儲氫材料,曉園出版社,2006。
市川勝,圖解氫能源,世茂出版社,2009。
趙蔚倫,金屬氫化物顆粒床熱傳導係數量測與實驗分析,國立中央大學機
械工程學系,2013。
張銘珊。金屬氫化物顆粒床熱傳導係數量測設計之模擬分析,國立中央大
學機械工程學系,2013。