跳到主要內容

簡易檢索 / 詳目顯示

研究生: 阮氏夢琴
Thi-Mong-Cam Nguyen
論文名稱: Measurement of Structure Deformation by the Digital Image Correlation Method
指導教授: 王仲宇
Chung-Yue Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 138
中文關鍵詞: 數位影像處理 (DIC)結構形變全尺度振動台動態載重複合混凝土結構木結構
外文關鍵詞: Digital Image Correlation (DIC), structure deformation, full-scale shaking table, dynamic loading, reinforced concrete structure, wood structure
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來,數位影像相關法(DIC)技術已經被開發用於結構變形量測。該系統可以為現場監測提供有效資訊,大大提升了量測結構工程試驗之全域非接觸測量的精度。此技術在移動性數據採集系統和成本效益方面都與傳統方法有所不同。本研究採用不同結構和建築材料的全尺寸實驗,分別研究了DIC系統在靜、動態荷載作用下於二維與三維運動軌跡的精度。 DIC系統包括影像記錄和將影像轉換成位移和應變的計算方法。在此,本研究提出三個實驗:(1)承受地震作用下的三層樓高之鋼筋混凝土結構,(2)循環荷載作用下的木柱反應,(3)循環荷載作用下的全尺寸木造結構。並將DIC方法的量測結果與另一種測量方法(如LVDT和NDI Optotrak Certus測量系統)結果進行比較,以此驗證DIC系統的準確性。


    Recently, the Digital Image Correlation (DIC) technique has been developed for structural deformation measurement. This system could provide information for field monitoring and greatly enhance the accuracy which able to do the whole field non-contact measurements of the structural engineering experiments. This technology takes over the conventional method at data acquisition system mobility and cost-effective. This study used the full-scale experiment of different structure and building material to investigate the precision of DIC system in both two and three dimensional of movements with the static and dynamic load applied, respectively.
    The DIC system includes the images recorded and a computational algorithm that transfer the digital images into displacements and strains. There are three experiments are presented in this study: (1) three stories reinforced concrete structure (RC) under earthquake loading, (2) wood column response under cyclic loading, (3) full - scale of wood frame structure under cyclic loading. The received results by the DIC method are compared with another measurement method such as LVDT and NDI Optotrak Certus measurement system to verify the accuracy of the DIC system.

    ABSTRACT i ABSTRACT ii ACKNOWLEDGMENT iii LIST OF CONTENT iv LIST OF TABLES vii LIST OF FIGURES viii CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Objective 1 1.3 Thesis organization 5 1.4 Literature review 5 CHAPTER 2 DIGITAL IMAGE CORRELATION METHOD 8 2.1 Introduction 8 2.2 Digital Image Correlation theory 8 2.2.1 Two dimensional Digital Image Correlation 9 2.2.2 Three dimensional Digital Image Correlation 14 2.2.3 Strain calculation 16 CHAPTER 3 EXPERIMENT APPARATUS 22 3.1 Digital Image Correlation (DIC) measurement system 22 3.1.1 Equipment 22 3.1.2 Calibration 24 3.1.3 Image correlation processing 26 3.2 Non Destructive Inspection (NDI) - Optotrak Certus measurement system 27 3.2.1 System equipment 28 3.2.2 System operation 29 3.3 Linear Variable Differential Transformer (LVDT) system 30 CHAPTER 4 THREE STOREYS REINFORCE CONCRETE BUILDING UNDER SEISMIC LOADING 34 4.1 Setting of experiment 34 4.1.1 General set-up 34 4.1.2 DIC measurement set-up 35 4.1.3 LVDT installation 40 4.1.4 SKYCOM measurement system 41 4.2 Loading 42 4.3 Data processing 43 4.3.1 Relative displacement 44 4.3.2 Strain comparison with LS-DYNA 45 4.4 Results and discussion 47 4.4.1 Measurement results 47 4.4.2 Measurement improved result 51 4.4.3 Discussion 59 CHAPTER 5 WOOD COLUMN DISPLACEMENT UNDER CYCLIC LOADING 60 5.1 Setting of experiment 60 5.1.1 General setting 60 5.1.2 DIC measurement setup 63 5.1.3 LVDT measurement setup 64 5.1.4 NDI Optotrak Certus system setup 66 5.2 Loading 68 5.3 Data processing 69 5.3.1 Relative displacement 69 5.3.2 Displacement force relation 69 5.4 Results and discussion 69 5.4.1 Relative displacement comparison 69 5.4.2 Force – displacement relationship 75 5.4.3 Conclusions 77 CHAPTER 6 WOOD FRAME DISPLACEMENT UNDER CYCLIC LOADING 78 6.1 Experiment setting 78 6.1.1 General setting 78 6.1.2 DIC measurement setup 80 6.1.3 LVDT measurement setup 81 6.1.4 NDI measurement setup 82 6.2 Loading 82 6.3 Data processing 83 6.4 Results and discussion 86 6.4.1 Displacement 86 6.4.2 Left hand side angle 86 6.4.3 Right hand side angle 91 CHAPTER 7 CONCLUSIONS 95 7.1 Conclusions 95 APPENDIX A. DIC-3D USER MANUAL 98 APPENDIX B. MEASUREMENT RESULTS 113 REFERENCES 120

    [1] W. Sun, C. Quan, C. J. Tay et al., “Global and local coordinates in digital image correlation,” Applied optics, vol. 46, no. 7, pp. 1050-1056, 2007.
    [2] B. Pan, Z. Lu, and H. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Optics and Lasers in Engineering, vol. 48, no. 4, pp. 469-477, 2010.
    [3] J. Poissant, and F. Barthelat, “A novel “subset splitting” procedure for digital image correlation on discontinuous displacement fields,” Experimental mechanics, vol. 50, no. 3, pp. 353-364, 2010.
    [4] S. H. Tung, J. C. Kuo, M. H. Shih et al., "Using the simplified 3D DIC method to measure the deformation of 3D surface." pp. 3945-3949.
    [5] F. Chen, X. Chen, X. Xie et al., “Full-field 3D measurement using multi-camera digital image correlation system,” Optics and Lasers in Engineering, vol. 51, no. 9, pp. 1044-1052, 2013.
    [6] S. Brauser, L.-A. Pepke, G. Weber et al., “Deformation behaviour of spot-welded high strength steels for automotive applications,” Materials Science and Engineering: A, vol. 527, no. 26, pp. 7099-7108, 2010.
    [7] N. Limodin, J. Réthoré, J.-Y. Buffiere et al., “Influence of closure on the 3D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3D volume correlation,” Acta Materialia, vol. 58, no. 8, pp. 2957-2967, 2010.
    [8] B. Pan, and K. Li, “A fast digital image correlation method for deformation measurement,” Optics and Lasers in Engineering, vol. 49, no. 7, pp. 841-847, 2011.
    [9] H. Schreier, J.-J. Orteu, and M. A. Sutton, Image correlation for shape, motion and deformation measurements: Springer US, 2009.
    [10] M. A. Sutton, J. J. Orteu, and H. Schreier, Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications: Springer Science & Business Media, 2009.
    [11] K. Li, Q. Wang, J. Wu et al., “Calibration error for dual-camera digital image correlation at microscale,” Optics and Lasers in Engineering, vol. 50, no. 7, pp. 971-975, 2012.
    [12] T. Lu, S. Yin, J. Zhang et al., "Rapid 360 degree imaging and stitching of 3D objects using multiple precision 3D cameras." p. 680506.
    [13] Y. Ge, B. Yin, and H. Tang, "3D face texture stitching based on differential coordinates," Transactions on edutainment VI, pp. 20-26: Springer, 2011.
    [14] J.-J. Orteu, F. Bugarin, J. Harvent et al., “Multiple-camera instrumentation of a single point incremental forming process pilot for shape and 3D displacement measurements: methodology and results,” Experimental Mechanics, vol. 51, no. 4, pp. 625-639, 2011.
    [15] N. Paragios, Y. Chen, and O. D. Faugeras, Handbook of mathematical models in computer vision: Springer Science & Business Media, 2006.
    [16] J. Lubliner, Plasticity theory: Courier Corporation, 2008.
    [17] K. Bathe, and H. Saunders, "Finite element procedures in engineering analysis," American Society of Mechanical Engineers, 1984.
    [18] E. Oñate, Structural analysis with the finite element method. Linear statics: volume 2: beams, plates and shells: Springer Science & Business Media, 2013.
    [19] W. M. Lai, D. H. Rubin, E. Krempl et al., Introduction to continuum mechanics: Butterworth-Heinemann, 2009.
    [20] J.-J. Orteu, V. Garric, and M. Devy, "Camera calibration for 3D reconstruction: application to the measurement of 3D deformations on sheet metal parts." pp. 252-264.
    [21] D. Garcia, “Mesure de formes et de champs de déplacements tridimensionnels par stéréo-corrélation d'images,” Institute National Polytechnique de Toulouse-INPT, 2001.

    QR CODE
    :::