跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪聖均
Sheng-Chun Hung
論文名稱: 以氮化鋁鎵/氮化鎵電晶體製作之空氣及氯離子感應器
Gas and Liquid Sensors based on AlGaN/GaN High Electron Mobility Transistor
指導教授: 紀國鐘
G. C. Chi
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 98
語文別: 英文
論文頁數: 94
中文關鍵詞: 感應器氮化鋁鎵/氮化鎵電晶體
外文關鍵詞: AlGaN/GaN HEMT, chloride ion sensor, pressure sensor
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們將討論以氮化鎵/氮化鋁鎵電晶體製作之空氣以及氯離子感應器之原理,製作,量測,以及結果討論。
    在空氣感應器方面,我們以一種具有電偶極子在其結構中的高分子聚合物 : PVDF 作為閘極改質的材料。因為PVDF材料內部具有不規則排列之電偶極子,故我們利用ink-jet plotter將其寫覆在電晶體的閘極部分後,還需利用高電壓極化法 (10kV) 使其電偶極子有規則性的排列。然後我們利用一個封閉之腔體,內部充入氮氣做為測試此空氣之壓力偵測器之實驗裝置。發現當我們增加腔體壓力時,PVDF內部之電偶極子之距離會隨之縮短,使得氮化鋁鎵/氮化鎵電晶體之表面電荷分佈改變。也會隨帶影響到介於氮化鋁鎵/氮化鎵材料之間的二維電子氣體電子密度。所以當我們在汲極以及源極間加入固定電壓時,則通過之電流會隨之改變。我們也利用不同之極化方向,得到不同之電流變化方向趨勢。在20 × 50 µm2之閘極大小之元件,我們可以量得到的最佳解析度為1 psig,也就是可分辨之解析度差異為51.7mmHg.
    在氯離子感應器方面,我們以氯化銀/銀金屬做為閘極改質之材料。氯化銀材料是利用陽極氧化之方法製作。因為氯化銀/銀金屬處於氯離子濃度高的環境時,會吸附氯離子在其上,導致其表面電位改變。進而影響介於氮化鋁鎵/氮化鎵材料之間的二維電子氣體電子密度。所以當我們在汲極以及源極間加入固定電壓時,則通過之電流會隨之改變。在20 × 50 µm2之閘極大小之元件,我們可以量測得到的最低濃度解析度為1×〖10〗^(-8) M.


    In this thesis, we study gas and liquid sensors based on AlGaN/GaN high electron mobility transistor.
    For gas sensor, AlGaN/GaN high electron mobility transistors (HEMTs) with a polarized polyvinylidene difluoride (PVDF) film coated on the gate area exhibited significant changes in channel conductance upon exposure to different ambient pressures. The PVDF thin film was deposited on the gate region with an ink-jet plotter. Next, the PVDF film was polarized with an electrode located 2 mm above the PVDF film at a bias voltage of 10kV and 70℃. Variations in ambient pressure induced changes in the charge in the polarized PVDF, leading to a change in surface charges on the gate region of the HEMT. Changes in the gate charge were amplified through the modulation of the drain current in the HEMT. By reversing the polarity of the polarity of the polarized PVDF film, the drain current dependence on the pressure could be reversed. The limit of detection of our gas pressure device was 1 psig (51.7 mmHg) using a 20 × 50 µm2 gate sensing area.
    For liquid sensor, AlGaN/GaN HEMTs with an Ag/AgCl gate exhibit significant changes in channel conductance upon exposing the gate region to various concentrations of chloride (Cl-) ion. The Ag/AgCl gate electrode, prepared by potentiostatic anodization, changes electrical potential when it encounters Cl- ions. This gate potential changes lead to a change of surface charge in the gate region of the HEMT, inducing a higher positive charge on the AlGaN surface, and increasing the piezoinduced charge density in the HEMT channel. These anions create an image positive charge on the Ag gate metal for the required neutrality, thus increasing the drain current of the HEMTs. The HEMTs source-drain current was highly dependent on Cl- ion concentration. The limit of detection of our device achieved was 1×〖10〗^(-8)M using a 20 × 50 µm2 gate sensing area.

    摘要       i ABSTRACT ii 誌謝       iv Table captions vii Figure captions viii Chapter 1 : Motivations 1 1.1 : Overview of gas and liquid sensor 1 1.2 : The scope in this dissertation 4 1.3 : References 6 Chapter 2 : The theories of sensing principles of AlGaN/GaN high electron mobility transistor (HEMT) 10 2.1 : Introduction 10 2.2 : Carrier concentration in AlGaN/GaN HEMT 11 2.2.1 : Free electron distribution in AlGaN/GaN HEMT 11 2.2.2 : The effect of polarization fields on carrier properties in AlGaN/GaN HEMT 13 2.3 : Sensing principle of AlGaN/GaN HEMTs with modified gate 15 2.4 : Conclusions 16 2.5 : References 17 Chapter 3: Cl- ion sensors made by AlGaN/GaN HEMT 18 3.1 : Approach of Cl- ion detection 18 3.2 : Cl- ion sensor device structures and fabrication processes 21 3.2.1 : AgCl growing and characterization 22 3.2.2 : Device fabrication and processes 26 3.3 : Device measurement 27 3.4 : Result and discussion 27 3.5 : Conclusion 28 3.6 : Reference 40 Chapter 4: Minipressure sensors made by AlGaN/GaN HEMT 43 4.1 : Approach of pressure sensor 43 4.2 : pressure sensor device structures and fabrication processes 45 4.2.1 : PVDF preparing and polarization 45 4.2.2 : Device fabrication and processes 47 4.3 : Device measurement 48 4.4 : Results and discussion 49 4.5 : Conclusion 50 4.6 : Reference 61 Chapter 5: Conclusions and future work 65 Publication list 67 Appendix 69

    1 A.L. Burlingame, R.K. Boyd and S.J. Gaskell, Mass spectrometry, Anal Chem 68 (1996), pp. 599–611.
    2 K.W. Jackson and G. Chen, Anal Chem 68 (1996), pp. 231–242.
    3 J.L. Anderson, E.F. Bowden and P.G. Pickup, Anal Chem 68 (1996), pp. 379–401.
    4 R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W.S. Kam, M. Shim and Y. Li et al., Proc Natl Acad Sci USA 100 (2003), pp. 4984–4990.
    5 C. Li, M. Curreli, H. Lin, B. Lei, F.N. Ishikawa and R. Datar et al., J Am Chem Soc 127 (2005), pp. 12484–12498.
    6 J. Zhang, H.P. Lang, F. Huber, A. Bietsch, W. Grange and U. Certa et al., Nat Nanotechnol 1 (2006), pp. 214–220.
    7 F. Huber, H.P. Lang and C. Gerber, Nat Nanotechnol 3 (2008), pp. 645–646.
    8 A. Sandu, Nat Nanotechnol 2 (2007), pp. 746–748.
    9 G. Zheng, F. Patolsky, Y. Cui, W.U. Wang and C.M. Lieber, Nat Biotechnol 23 (2005), pp. 1294–1296.
    10 J. Jun, B. Chou, J. Lin, A. Phipps, S. Xu and K. Ngo et al., Solid State Electron 51(2007), pp. 1018–1022 .
    11 X. Yu, C. Li, Z.N. Low, J. Lin, T.J. Anderson and H.T. Wang et al., Sensor Actuator B 135 (2008), pp. 188–194.
    12 H.T. Wang, T.J. Anderson, F. Ren, C. Li, Z.N. Low and J. Lin et al., Appl Phys Lett 89 (2006), pp. 242111–242114.
    13 H.T. Wang, T.J. Anderson, B.S. Kang, F. Ren, C. Li and Z.N. Low et al., Appl Phys Lett 90 (2007), pp. 252109–252111.
    14 T.J. Anderson, H.T. Wang, B.S. Kang, F. Ren, S.J. Pearton and A. Osinsky et al., Appl Surf Sci 255 (2008), pp. 2524–2526.
    15 Jihyun Kim, B.P. Gila, G.Y. Chung, C.R. Abernathy, S.J. Pearton and F. Ren, Solid State Electron 47 (2003), pp. 1487–1490.
    16 H.T. Wang, B.S. Kang, F. Ren, R.C. Fitch, J.K. Gillespie and N. Moser et al., Appl Phys Lett 87 (2005), pp. 172105–172107.
    17 J. Schalwig, G. Muller, U. Karrer, M. Eickhoff, O. Ambacher and M. Stutzmann et al., Appl Phys Lett 80 (2002), pp. 1222–1224.
    18 B.P. Luther, S.D. Wolter and S.E. Mohney, Sensor Actuator B 56 (1999), pp. 164–168.
    19 B.S. Kang, R. Mehandru, S. Kim, F. Ren, R.C. Fitch and J.K. Gillespie et al., Phys Status Solidi (c) 2 (2005), pp. 2672–2674.
    20 H.T. Wang, B.S. Kang, F. Ren, L.C. Tien, P.W. Sadik and D.P. Norton et al., Appl Phys A: Mater Sci Proc 81 (2005), pp. 1117–1120.
    21 J.S. Wright, W. Lim, B.P. Gila, S.J. Pearton, F. Ren and W. Lai et al., J Vac Sci Technol B 27 (2009), pp. L8–L10.
    22 J.L. Johnson, Y. Choi, A. Ural, W. Lim, J.S. Wright and B.P. Gila et al., J Electron Mater 38 (2009), pp. 490–494.
    23 W. Lim, J.S. Wright, B.P. Gila, J.L. Johnson, A. Ural and T. Anderson et al., Appl Phys Lett 93 (2008), pp. 072110–072112.
    24 L. Tien, P. Sadik, D.P. Norton, L. Voss, S.J. Pearton and H.T. Wang et al., Appl Phys Lett 87 (2005), pp. 222106–222108 .
    25 O. Kryliouk, H.J. Park, H.T. Wang, B.S. Kang, T.J. Anderson and F. Ren et al., J Vac Sci Technol B 23 (1891) (2005), pp. 1891–1894.
    26 L. Tien, H.T. Wang, B.S. Kang, F. Ren, P.W. Sadik and D.P. Norton et al., Electrochem Solid State Lett 8 (2005), pp. G239–G241.
    27 H.T. Wang, B.S. Kang, F. Ren, L.C. Tien, P.W. Sadik and D.P. Norton et al., Appl Phys Lett 86 (2005), pp. 243503–243505.
    28 M. Eickhoff, J. Schalwig, G. Steinhoff, O. Weidemann, L. Gorgens and R. Neuberger et al., Phys Status Solidi (c) 6 (2003), pp. 1908–1918.
    29 R. Mehandru, B. Luo, B.S. Kang, Jihyun Kim, F. Ren and S.J. Pearton et al., Solid State Electron 48 (2004), pp. 351–353.
    30 R. Neuberger, G. Muller, O. Ambacher and M. Stutzmann, Phys Status Solidi (a) 183 (2) (2001), pp. R10–R12
    31 P. Gangwani, S. Pandey, S. Haldar, M. Gupta and R.S. Gupta, Solid State Electron 51 (2007), pp. 130–135.
    32 L. Shen, R. Coffie, D. Buttari, S. Heikman, A. Chakraborty and A. Chini et al., IEEE Electron Dev Lett 25 (2004), pp. 7–9.
    33 B.S. Kang, H.T. Wang, T.P. Lele, F. Ren, S.J. Pearton and J.W. Johnson et al., Appl Phys Lett 91 (2007), pp. 112106–112108.
    34 A. El. Kouche, J. Lin, M.E. Law, S. Kim, B.S. Kim and F. Ren et al., Sensor Actuator B: Chem 105 (2005), pp. 329–333.
    35 H.T. Wang, B.S. Kang, F. Ren, S.J. Pearton, J.W. Johnson and P. Rajagopal et al., Appl Phys Lett 91 (2007), pp. 222101–222103.
    36 B.S. Kang, S. Kim, F. Ren, B.P. Gila, C.R. Abernathy and S.J. Pearton, Sensor Actuator B: Chem 104 (2005), pp. 232–236.
    37 H.T. Wang, B.S. Kang, T.F. Chancellor Jr., T.P. Lele, Y. Tseng and F. Ren et al., Electrochem Solid State Lett 10 (2007), pp. J150–J152.
    38 K.H. Chen, H.W. Wang, B.S. Kang, C.Y. Chang, Y.L. Wang and T.P. Lele et al., Sensor Actuator B: Chem 134 (2008), pp. 386–389.
    39 S.J. Pearton, T. Lele, Y. Tseng and F. Ren, Trends Biotechnol 25 (2007), pp. 481–482.
    40 H.T. Wang, B.S. Kang, T.F. Chancellor Jr., T.P. Lele, Y. Tseng and F. Ren et al., Appl Phys Lett 91 (042114) (2007), pp. 042114–042116.
    41 B.S. Kang, H.T. Wang, F. Ren, B.P. Gila, C.R. Abernathy and S.J. Pearton et al., Electrochem Solid State Lett 11 (3) (2008), pp. J19–J21.
    42 B.S. Kang, H.T. Wang, F. Ren, B.P. Gila, C.R. Abernathy and S.J. Pearton et al., Appl Phys Lett 91 (2007), pp. 012110–012112.
    43 B.S. Kang, G. Louche, R.S. Duran, Y. Gnanou, S.J. Pearton and F. Ren, Solid State Electron 48 (2004), pp. 851–854.
    44 J.R. Lothian, J.M. Kuo, F. Ren and S.J. Pearton, J Electron Mater 21 (1992), pp. 441–445.
    45 J.W. Johnson, B. Luo, F. Ren, B.P. Gila, W. Krishnamoorthy and C.R. Abernathy et al., Appl Phys Lett 77 (2000), p. 3230.
    46 B.S. Kang, S.J. Pearton, J.J. Chen, F. Ren, J.W. Johnson and R.J. Therrien et al., Appl Phys Lett 89 (2006), pp. 122102–122104.
    47 B.S. Kang, F. Ren, L. Wang, C. Lofton, W. Tan and S.J. Pearton et al., Appl Phys Lett 87 (2005), pp. 023508–023510.
    48 B.S. Kang, H. Wang, F. Ren, S.J. Pearton, T. Morey and D. Dennis et al., Appl Phys Lett 91 (2007), pp. 252103–252105.
    49 B.S. Kang, S. Kim, F. Ren, J.W. Johnson, R. Therrien and P. Rajagopal et al., Appl Phys Lett 85 (2004), pp. 2962–2964.
    50 S.J. Pearton, B.S. Kang, S. Kim, F. Ren, B.P. Gila and C.R. Abernathy et al., J Phys: Condensed Matter 16 (2004), pp. R961–R985.

    QR CODE
    :::