跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李思儒
Szu-Ju Li
論文名稱: 使用含量子效應的等效電路模型模擬半導體元件之特性
Semiconductor Device Simulation with Equivalent Circuit Model including Quantum Effect
指導教授: 蔡曜聰
Yao-Tsung Tsai
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 95
語文別: 英文
論文頁數: 101
中文關鍵詞: 量子效應等效電路模型克若尼-潘尼模型薛丁格波動方程式帶狀不完全LU法
外文關鍵詞: quantum mechanisms, equivalent circuit model, Kronig-Penney model, Schrodinger equation, Banded incomplete LU method
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在目前最新奈米級半導體元件的發展上,量子力學扮演了相當重要的角色,同時在元件模擬與設計上也同樣要予以考量。因此開發一個包含量子效應的元件模擬器是必要的。在本論文中,我們將介紹一維薛丁格(Schrodinger)計算與密度梯度模型(density gradient model) 來模擬量子效應。首先我們提出了等效電路法與高效率特徵值解法器來解薛丁格波動方程式,根據這個薛丁格等效電路模型,我們可以建立柏松─薛丁格互解方程式等效電路模型來模擬金氧半(MOS)元件在反轉區的量子效應。此外,我們也將分別使用簡化數值法與等效電路法來模擬克若尼-潘尼(Kronig-Penney)模型,以觀察半導體元件中能帶的特性。在元件模擬中,為了使所有變數都能有相同數量級而不需比例縮放參數(scaling factor),我們提出了對數比例法(log-scale)以幫助其在牛頓疊代法的收斂。為了解決記憶體空間不足的問題,我們也提出了帶狀不完全LU(Banded incomplete LU)法來改善這問題。最後,我們將建立起密度梯度公式的等效電路模型,並利用分離模式(decoupled method)與對數比例法來解量子飄移擴散模型(quantum drift-diffusion model)。


    In up-to-date development of nanoscale semiconductor devices, quantum mechanisms play an important role and have to be properly taken into account in the simulation and design. Therefore, it is necessary to develop the device simulator including quantum effects. The 1-D Schrodinger computation and density gradient model for quantum effect simulations will be introduced in this dissertation. We propose a simplified equivalent circuit model to solve the Schrodinger equation and an efficient eigenvalue and eigenvetor solver to solve the eigenvalue problem. Based on the equivalent circuit model of Schrodinger equation, the equivalent circuit model of the Poisson-Schrodinger equation can be created and can be simulated to show that the MOS device features of the quantum effects at strong inversion. Moreover, the Kronig-Penney approximation will be also applied to reveal the essential features of the energy band structure of semiconductors with the simplified numerical method and the equivalent circuit method. To make all variables in similar orders without scaling factors, we propose a log-scale method to help Newton-Raphson iterations to easily converge in device simulations. Also, we will propose a matrix solver using Banded incomplete LU method to improve the problem that the memory space is insufficient. Finally, the density gradient model will be converted to an equivalent circuit form and we use the decoupled method with a log-scale method to solve the self-consistent quantum drift-diffusion model.

    1. Introduction 1 2. Equivalent-Circuit Modeling of Schrodinger Equation 6 2.1 Overview of Schrodinger Equation Solution 7 2.2 Development of Equivalent Circuit Model 8 2.2.1 1D Equivalent Circuit Model 9 2.2.2 2D Equivalent Circuit Model 13 2.3 Simulations on Quantum Well Device 15 3. Development of Schrodinger – Poisson Self-Consistent Solver and MOS Capacitor Device Simulation 20 3.1 Equivalent Circuit Model of Schrodinger – Poisson Equation 21 3.2 Simulation in MOS Inversion Layer 26 4. Simplified Numerical Method and Equivalent Circuit Method for Kronig-Penney Model Simulations 31 4.1 Kronig-Penney Model Formulation and Numerical Solver 32 4.2 Equivalent Circuit Method for Kronig-Penney Model Simulation 36 4.3 Comparison of Simulations in Simplified Numerical Method and Equivalent Circuit Method 38 4.3.1 Simulation with Simplified Numerical Method 39 4.3.2 Simulation with Equivalent Circuit Method and its Comparison with Simplified Numerical Method 43 5. Log-Scale Method with Equivalent Circuit Model in Device Simulation 49 5.1 Log-Scale Variable Method and Large-Scale Variable Method 50 5.2 Equivalent Circuit Method with Log-Scale Variable Method 52 5.3 Device Simulations with Log-Scale Variable Method 55 6. Banded incomplete LU factorization and its applications in semiconductor device simulation 59 6.1 Banded Incomplete LU Method 61 6.2 Simulation Results and Comparisons 65 7. Quantum-Corrected Drift-Diffusion Modeling with Equivalent Circuit Method 68 7.1 Drift-Diffusion Model and Density-Gradient Model 69 7.2 Equivalent Circuit Method for QDD Model 72 7.3 Device Simulations with QDD Model 76 7.3.1 Numerical Algorithm for QDD Model Simulation 76 7.3.2 Boundary Conditions for QDD model 77 7.3.3 Device Simulation Results 80 8. Conclusion 83 Reference 87 Appendix A 94 Appendix B 96 Appendix C 100

    [1] B.A. Biegel et al, “Simulation of ultra-small MOSFETs using a 2-D quantum-corrected driftdiffusion model,” 35th Annual Technical meeting of Society of Engineering Science, Pullman, Washington, September, pp. 53-64, 1998.
    [2] M. G. Ancona et al, “Simulation of quantum confinement effects in ultra-thin oxide MOS structures,” IEEE Trans. Computer-Aided Design, 1998. [Online: http://tcad.stanford.edu/tcad-journal/archive].
    [3] B. A. Biegel, C. S. Rafferty, M. G. Ancona, and Z. Yu, “Efficient multi-. dimensional simulation of quantum confinement effects in advanced. MOS devices,” IEEE Trans. Electron Devices, to be published.
    [4] R. Lake, G. Klimeck, R. C. Bowen and D. Jovanovic, "Single and Multi-Band Modeling of Quantum Electron Transport through Layered Semiconductor Devices," J. of Appl. Phys., vol. 81, p. 7845, 1997.
    [5] B. A. Biegel, J.D. Plummer, “Comparison of self-consistency iteration options for the Wigner function method of quantum device simulation,” Phys. Rev. B, vol. 54, p. 8070, 1996.
    [6] R. K. Mains, and G. I. Haddad, “An Accurate Re-formulation of the Wigner Function Method for Quantum Transport Modeling,” Journal of Computational Physics, vol. 112, pp.149-161, 1994.
    [7] F. Stern, “Self-consistent results for n-type Si inversion layers,” Phys. Rev. B, vol. 5, pp. 4891-4899, 1972.
    [8] S. J. Li, C. C. Chang, and Y. T. Tsai, “Simulation of Si n-MOS inversion layer with Schrodinger-Poisson equivalent circuit model,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 19, pp.229–238, 2006.
    [9] S. J. Li, C. H. Ho, and Y. T. Tsai, “Kronig-Penney Model Simulation with Equivalent Circuit Method,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 20, pp.109–116, 2006.
    [10] J.-R. Zhou and D. K. Ferry, “Ballistic phenomena in GaAs MESFETs: Modeling with quantum moment equations,” Semicond. Sci. Technol., vol. 7, pp. B546–B548, 1992.
    [11] H. L. Grubin, T. R. Govindan, J. P. Kreskovsky, and M. A. Stroscio, “Transport via the Liouville equation and moments of quantum distribution functions,” Solid-State Electron., vol. 36, pp. 1697–1709, 1993.
    [12] S. J. Li, C. H. Ho, C. N. Liao, and Y. T. Tsai, “Log-scale method with equivalent circuit model in semiconductor device simulations,” to be appeared in Journal of the Chinese Institute of Engineers.
    [13] M. J. Van Dort, P. H. Woerlee, and A. J. Walker, “A simple model for quantisation effects in heavily-doped silicon MOSFETs at inversion conditions,” Solid-State Electronics, vol. 37, pp.411-414, 1994.
    [14] C. Takano, Z. Yu, and R. W. Dutton, “A nonequilibrium one-dimensional quantum-mechanical simulation for AlGaAs/GaAs HEMT structures,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 9, pp.1217-1224, 1990.
    [15] S. J. Li, J. F. Dai, C. C. Chang, and Y. T. Tsai, “Quantum effects in Si n-MOS inversion layer with simple numerical method,” Proc Electron Devices and Materials Symposium (EDMS), pp. 662-665, 2003.
    [16] K. A. Remley, and A. Weisshar, “A versatile impedance boundary method of moments computational technique for solving the one-dimensional Schrodinger equation with application to quantum well and quantum wire problems,” IEEE Journal of Quantum Electronics, vol. 34, pp.1171–1179, 1998.
    [17] G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, “Variational calculations on a quantum well in an electric field,” Phys. Rev. B, vol. 28, pp. 3241-3245, 1983.
    [18] J. Singh, “A new method for solving the ground-state problem in arbitrary quantum wells: Application to electron-hole quasi-bound levels in quantum wells under high electric field.” Appl. Phys. Lett., vol. 28, pp. 434-436, 1986.
    [19] A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “A novel numerical technique for solving the one-dimensional Schroedinger equation using matrix approach-application to quantum well structures,” IEEE Journal of Quantum Electronics, vol. 24, pp.1524–1531, 1988.
    [20] W. Shockley, Electrons and Holes in Semiconductors, With Applications to Transistor Electronics, New York: Van Nostrand, 1950.
    [21] S. Selberherr, Analysis and Simulation of Semiconductor Devices, New York: Springer-Verlag, 1984.
    [22] J. Vlach, and K. Singhal, Computer Methods for Circuit Analysis and Design, New York: Van Nostrand Reinhold, 1994.
    [23] C. L. Teng, An Equivalent Circuit Approach to Mixed-Level Device and Circuit Simulation, M. S. Thesis, Institute of EE, National Central University, Taiwan, R.O.C., 1997.
    [24] D. A. Neamen, Semiconductor Physics And Devices, McGraw-Hill, 2002.
    [25] J. Wang, J. P. Leburton, and J. E. Zucker, “Modeling of the optical properties of a barrier, reservoir, and quantum-well electron transfer structure,” IEEE Journal of Quantum Electronics, vol. 30, pp.989-996, 1994.
    [26] A. S. Spinelli, A. Benvenuti, and A. Pacelli, “Self-consistent 2-D model for quantum effects in n-MOS transistors,” IEEE Transactions on Electron Devices, Vol. 45, pp. 1342-1349, 1998.
    [27] A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, “Iteration scheme for the solution of the two-dimensional Schrodinger-Poisson equations in quantum structures,” Journal of Applied Physics, vol. 81, pp.7880-7884, 1997.
    [28] J. F. Dai, C. C. Chang, S. J. Li, and Y. T. Tsai, “Further improvements in equivalent-circuit model with Levelized incomplete LU factorization for mixed-level semiconductor device and circuit simulation,” Solid-State Electronics, vol. 48, pp. 1181-1188, 2004.
    [29] T. Janik and B. Majkusiak, “Analysis of the MOS Transistor Based on the Self-Consistent Solution to the Schrodinger and Poisson Equations and on the Local Mobility Model,” IEEE Transactions on Electron Device, vol. 45, pp.1263-1271, 1998.
    [30] G. Fiori, and G.. Iannaccone, “Effects of quantum confinement and discrete dopants in nanoscale bulk-Si nMOSFET,” IEEE-NANO, pp. 248-253, 2001.
    [31] J. F. Dai, C. C. Chang, S. J. Li, and Y. T. Tsai, “Simplified equivalent-circuit modeling for decoupled and partial decoupled methods in semiconductor device simulation,” International Journal of Numerical Modelling, Electronic Networks, Devices, and Fields, vol. 17, pp. 421-432, 2004.
    [32] C. H. Kuo, An Equivalent Circuit Model of Quantum Mechanics and its Investigation to Device Simulation, M. S. Thesis, Institute of EE, National Central University, Taiwan, R.O.C, 2004.
    [33] A. Abramo, A. Cardin, L. Selmi, and E. Sangiorgi, “Two-Dimensional Quantum Mechanical Simulation of Charge Distribution in Silicon MOSFETs,” IEEE Transactions on Electron Device, vol. 47, pp.1858-1863, 2000.
    [34] R. D. Kronig, and W. G.. Penney, “Quantum Mechanics of Electrons in Crystal Lattices,” Proc. of the Royal Society London, vol. 130, pp. 499-513, 1931.
    [35] S. Mishra, and S. Satpathy, “Kronig-Penny model with the tail-cancellation method,” American Journal of Physics, vol. 69, pp. 512-513, 2001.
    [36] S. P. Day, H. Zhou, and D. L. Pulfrey, “The Kronig-Penney Appmximation: May It Live On,” IEEE Transcations on Education, vol. 33, pp. 355-358, 1990.
    [37] H. S. Cho, and P. R.Prucnal, “New formalism of the Kronig-Penny model with application to superlattices,” Physical Review B, vol. 36, pp. 3237-3242, 1987.
    [38] A. Nussbaum, “Extensions to the Kronig-Penney model,” IEEE Transcations on Education, vol. 33, pp. 359, 1990.
    [39] F. Szmulowicz, “Kronig-Penny model: a new solution,” European Journal of Physics. vol.18, pp. 392-397, 1997.
    [40] S. Singh, “Kronig-Penny model in reciprocal lattice space,” American Journal of Physics. vol. 51, pp. 179, 1983.
    [41] A. Harwit, J. S. Harris, “Calculated quasi-eigenstates and quasi-eigenenergies of quantum well superlattices in an applied electric field,” American Journal of Physics, vol. 60, pp. 3211-3213, 1986.
    [42] N. O.Folland, “Energy bands and forbidden gaps in the kronig-penny model,” Physical Review B. Vol. 28, pp. 6068-6071, 1983.
    [43] H. Kroemer, Quantum mechanics: For engineering, materials science, and applied physics, Prentice-Hall, New York, 1994.
    [44] G. Yangn, S. Wang, and R. Wang, “An efficient preconditioning technique for numerical simulation of hydrodynamic model semiconductor devices,” International Journal for Numerical Methods in Engineering, vol. 16, pp. 387–400, 2003.
    [45] H. Abebe, and E. Cumberbatch, “Quantum Mechanical Effects Correction Models for Inversion Charge and Current-Voltage (I-V) Characteristics of the MOSFET Device,” Nanotech 2003, pp. 218-221, 2003.
    [46] J. W. Slotboom, “Computer-Aided Two-Dimensional Analysis of Bipolar Transistors,” IEEE Trans. Electron Devices, vol. 20, no. 8, pp. 669-679, 1973.
    [47] F. Yamamoto, and S. Takahashi, “Vectorized LU Decomposition Algorithms for Large-Scale Circuit Simulation,” IEEE Trans. Computer-Aided Design, vol .4, pp. 232-239, 1985.
    [48] K. Mayaram, and D. O. Pederson, “Coupling algorithms for mixed-level circuit and device simulation,” IEEE Trans. Computer-Aided Design, vol. 11, pp.1003-1012 , 1992.
    [49] R. S. Varga, Matrix Iterative Analysis, Springer Verlag, New York, 2000.
    [50] J. F. Dai, “Development of 2-D and 3-D Numerical Device Simulator including an Improved L-ILU Solver and the Circuit representation of PDM,” Ph.D. dissertation, National Central University, Taiwan, 2004.
    [51] J. P. Chang, “Numerical method of the Quantum Drift Diffusion in Semiconductor,” M. S. Thesis, Graduate Institute of Mathematics, National Taiwan University, Taiwan, R.O.C., 2005.
    [52] F. Brezzi, I. Gasser, P. A. Markowich, and C. Schmeiser, “Thermal Equilibrium States of the Quantum Hydrodynamic Model for Semiconductors in One Dimension,” Applied Mathematics Letters, vol. 8, pp. 47-52, 1995.
    [53] A. Wettstein, A. Schenk, and W. Fichtner, “Quantum Device-Simulation with the Density-Gradient Model on Unstructured Grids,” IEEE Transactions on Electron Devices, Vol. 48, pp. 279–284, 2001.
    [54] H. K. Gummel, “A self-consistent iterative scheme for one-dimensional steady state transistor calculations,” IEEE Transactions on Electron Devices, pp.455-465, 1964.
    [55] M. G. Ancona and H. F. Tiersten, “Macroscopic physics of the silicon inversion layer,” Phys. Rev. B, vol. 35, no. 15, pp. 7959–7965, 1987.
    [56] M. G. Ancona and G. J. Iafrate, “Quantum correction to the equation of sate of an electron gass in a semicunductor,” Phys. Rev. B, vol. 39, no. 13, pp. 9536-9540, 1989.
    [57] C. L. Gardner, “The quantum hydrodynamic model for semiconductor devices,” SIAM J. Appl. Math., vol. 54, no. 2, pp. 409-427, 1994.
    [58] C. S. Rafferty, Z. Yu, B. Biegel, M. G. Ancona, J. Bude, and R. W. Dutton, “Multi-dimensional quantum effect simulation using a density-gradient model and script-level programming techniques,” SISPAD ’98, Lueven, Belgium, p. 137, Sept. 1998.
    [59] F. M′ehats, “A Quantum Drift-Diffusion model derived from an entropy principle,” SEMIC 2005, Milano, February, pp.17-18, 2005.
    [60] C. D. Falco et al., “Quantum-corrected drift-diffusion models for transport in semiconductor devices,” Journal of Computational Physics, vol. 22, pp.533-561, 2005.
    [61] M. J. van Dort, P. H. Woerlee, and A. J. Walker, “A simple model for quantization effects in heavily-doped silicon MOSFETs at inversion conditions,” Solid-State Electron, no. 3, pp. 411-414, 1994.
    [62] D. Connelly, et al., “Macroscopic Simulation of Quantum Mechanical Effects in 2-D MOS Devices via the Density Gradient Method,” IEEE Transaction on Electron Devices, p. 619, Apr. 2002.
    [63] S. J. Li, J. F. Dai, C. C. Chang, C. H. Huang, Y. T. Tsai, “Development of 3-D equivalent-circuit modeling with decoupled L-ILU factorization in semiconductor device simulation,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 20, pp.133–148, 2006.
    [64] M. G. Ancona, D. Yergeau, Z. Yu, B. A. Biegel, “On Ohmic Boundary Conditions for Density-Gradient Theory,” Journal of Computational Electronics, vol. 1, pp. 103-107, 2002.
    [65] A. Jungel, and R. Pinnau, “Global nonnegative solutions of a nonlinear fourth-order parabolic equation for quantum systems,” Society for Industrial and Applied Mathematics, vol. 32, pp. 760-777, 2000.
    [66] R. Pinnau, and A. Unterreiter, “The Stationary Current-Voltage Characteristics of the Quantum Drift-Diffusion Model,” Society for Industrial and Applied Mathematics, vol. 37, pp. 221-245, 1999.
    [67] R. Pinnau, “A note on boundary conditions for quantum hydrodynamic models,” Applied Mathematics Letters, vol. 12, pp. 77-82, 1999.
    [68] R. Pinnau, “Numerical approximation of the transient quantum drift-diffusion model,” Preprint submitted to Elsevier Preprint, 2000.

    QR CODE
    :::