跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉俐瑩
Li-Ying Liu
論文名稱: 矽波導奈米結構反射式偏振旋轉器
Reflective Polarization Converter formed by Nanostructured Si Waveguides
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 78
中文關鍵詞: 偏振旋轉器雙折射光子晶體矽波導
外文關鍵詞: birefringent
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以Folded Šolc Filter為基礎所設計出的偏振旋轉器結構,以在矽波導中蝕刻週期性的左右空氣方孔來達到雙折射的效果,其結果會與左右交替方位角的Folded Šolc Filter相似。我們使用了有限時域差分法、光束傳播法及三維特徵模態展開法等方法,成功模擬出在極微小的元件長度(約9.21 µm)下達到高偏振旋轉反射率的成果(最高可達到的反射率為93.1%),可操作的波長範圍約為1460.4nm至1619.4nm,涵蓋光通訊所使用的光譜範圍從S-band(1460-1530nm)、C-band(1530-1565nm)到L-band(1565-1625nm),並透過計算其能帶結構來確認波導反射頻譜中的波峰是由光子能隙所造成的。期望本元件可應用於量子光學電腦中的邏輯計算中。


    In this thesis, we designed a polarization rotator based on the Folded Šolc Filter that can possess birefringence by etching periodically-arranged alternatively-shifted air holes in a silicon waveguide. We obtain the reflective polarization rotator with high reflectivity with an extremely small device length (approximately 9.21 µm) using the methods including the finite-difference time-domain method, the beam propagation method, and the three-dimensional eigenmode expansion method. The highest achievable reflectivity was 93.1%, with an operation bandwidth from 1460.4nm to1619.4nm, which covers the S-band (1460-1530 nm), C-band (1530-1565 nm), and L-band (1565-1625 nm) of optical communication spectrum. By calculating the band structure, we confirmed that the peaks in the reflection spectrum were caused by photonic bandgaps. This device could be applied for optical quantum computing.

    中文摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 序論 1 1.1 研究動機 1 1.2 研究方法 6 1.3 結論 7 第二章 雙折射多層膜矩陣法 8 2.1 Wave-Transfer Matrix[28] 8 2.2 Scattering Matrix[28] 9 2.3 Propagation Matrix in a Homogeneous Medium[28] 10 2.4 座標旋轉矩陣(Coordinate-Transformation Matrix) 10 2.5 矩陣法用於計算Fabry-Pérot結構[28] 12 2.6 4x4矩陣法推導 14 2.7 4x4矩陣法用於單層雙折射晶體之計算 16 2.8 結論 20 第三章 索爾克濾波器 21 3.1 Folded Šolc Filter[47] 21 3.2 Fan Šolc Filter[47] 24 3.3 使用4x4矩陣法計算Šolc Filter 26 3.4 結論 34 第四章 結構設計與模擬分析 35 4.1 結構設計 35 4.2 反射頻譜分析 36 4.2.1 Duty-cycle (DC) 37 4.2.2 總洞數N 39 4.2.3 矩形空氣孔洞的深度Hh與寬度Wh 40 4.3 4x4矩陣法驗證 43 4.4 結論 48 第五章 總結與未來展望 49 5.1 總結 49 5.2 未來展望 49 參考文獻 51 附錄 55

    [1] S. Wiesner, "Conjugate coding," ACM Sigact News, vol. 15, no. 1, pp.
    78-88, 1983.
    [2] N. J. Cerf, C. Adami, and P. G. Kwiat, "Optical simulation of quantum
    logic," Physical Review A, vol. 57, no. 3, p. R1477, 1998.
    [3] K. Wang et al., "Quantum metasurface for multiphoton interference and
    state reconstruction," Science, vol. 361, no. 640 7, pp. 1104-1108, 2018.
    [4] X. Xiong, C.-L. Zou, X.-F. Ren, and G.-C. Guo, "Integrated
    polarization rotator/converter by stimulated Raman adiabatic passage,"
    Optics Express, vol. 21, no. 14, pp. 17097 -17107, 2013.
    [5] S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, "Single-trench
    waveguide TE-TM mode converter," Optics Express, vol. 17, no. 14, pp.
    11267-11273, 2009.
    [6] D. Leung, B. Rahman, and K. Grattan, "Numerical analysis of
    asymmetric silicon nanowire waveguide as compact polarization
    rotator," IEEE Photonics Journal, vol. 3, no. 3, pp. 381-389, 2011.
    [7] Y. Wakabayashi, T. Hashimoto, J. Yamauchi, and H. Nakano, "Short
    waveguide polarization converter operating over a wide wavelength
    range," Journal of Lightwave Technology, vol. 31, no. 10, pp. 1544 -
    1550, 2013.
    [8] Y. Shani et al., "Polarization rotation in asymmetric periodic loaded rib
    waveguides," Applied Physics Letters, vol. 59, no. 11, pp. 1278 -1280,
    1991.
    [9] Z. Wang and D. Dai, "Ultrasmall Si-nanowire-based polarization
    rotator," JOSA B, vol. 25, no. 5, pp. 747-753, 2008.
    [10] C.-C. Chen, "Design of ultra -short polarization convertor with
    enhanced birefringence by photonic crystals," Results in Physics, vol.
    24, p. 104138, 2021.
    [11] 詹凱 畯, "矽波 導 平 移式 光 子晶 體 偏振 旋轉 共 振腔 研 究 ", 國立 中 央大
    學光 電 科學 與 工程 學系 碩 士論 文 , 2021.
    [12] J. Van der Tol et al., "Realization of a short integrated optic passive
    polarization converter," IEEE Photonics Technology Letters, vol. 7, no.
    8, pp. 893-895, 1995.
    [13] S. Obayya, B. Rahman, and H. El-Mikati, "Vector beam propagation
    analysis of polarization conversion in periodically loaded waveguides,"
    IEEE Photonics Technology Letters, vol. 12, no. 10, pp. 1346 -1348,
    2000.
    52
    [14] C. Brooks, P. E. Jessop, H. Deng, D. O. Yevick, and G. Tarr, "Passive
    silicon-on-insulator polarization-rotating waveguides," Optical
    Engineering, vol. 45, no. 4, pp. 044603 -044603-5, 2006.
    [15] G. Chen, L. Chen, W. Ding, F. Sun, and R. Feng, "Ultra -short siliconon-insulator (SOI) polarization rotator between a slot and a strip
    waveguide based on a nonlinear raised cosine flat-tip taper," Optics
    Express, vol. 21, no. 12, pp. 14888-14894, 2013.
    [16] H. Zhou, C. Li, A. L. Eujin, L. Jia, M. Yu, and G. Lo, "Ultra -compact
    and broadband Si photonics polarization rotator by self-alignment
    process," Optics Express, vol. 23, no. 5, pp. 681 5-6821, 2015.
    [17] K. Okamoto, Fundamentals of Optical Waveguides. Elsevier, 2021.
    [18] D. Marcuse, Theory of Dielectric Optical Waveguides. Elsevier, 2013.
    [19] S. Keppler, M. Hornung, R. Bödefeld, M. Kahle, J. Hein, and M.
    Kaluza, "All-reflective, highly accurate polarization rotator for high -
    power short-pulse laser systems," Optics Express, vol. 20, no. 18, pp.
    20742-20747, 2012.
    [20] R. Soref, "The past, present, and future of silicon photonics," IEEE
    Journal of Selected Topics in Quantum Electronics, v ol. 12, no. 6, pp.
    1678-1687, 2006.
    [21] R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, and P. Minzioni,
    "Coupling strategies for silicon photonics integrated chips," Photonics
    Research, vol. 7, no. 2, pp. 201-239, 2019.
    [22] B. Jalali and S. Fathpour, "Silicon photonics," Journal of Lightwave
    Technology, vol. 24, no. 12, pp. 4600 -4615, 2006.
    [23] G. T. Reed, "Silicon photonics: the state of the art," 2008.
    [24] M. Kira and S. W. Koch, Semiconductor Quantum Optics. Cambridge
    University Press, 2011.
    [25] J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum
    Optics. Courier Corporation, 2006.
    [26] H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum
    Optics. John Wiley & Sons, 2019.
    [27] M. O. Scully and M. S. Zubairy, "Quantum optics," ed: American
    Association of Physics Teachers, 1999.
    [28] B. E. Saleh and M. C. Teich, Fundamentals of Photonics. john Wiley &
    sons, 2019.
    [29] P. Yeh, "Electromagnetic propagation in birefringent layered media,"
    JOSA, vol. 69, no. 5, pp. 742-756, 1979.
    53
    [30] M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J.
    Ouderkirk, "Giant birefringent optics in multilayer polymer mirrors,"
    Science, vol. 287, no. 5462, pp. 2451 -2456, 2000.
    [31] M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, "Surfac e plasmon
    resonance sensor based on a single -mode polarization-maintaining
    optical fiber," Sensors and Actuators B: Chemical, vol. 90, no. 1 -3, pp.
    236-242, 2003.
    [32] K. Busch, G. Von Freymann, S. Linden, S. Mingaleev, L.
    Tkeshelashvili, and M. Wegener, "Periodic nanostructures for
    photonics," Physics Reports, vol. 444, no. 3 -6, pp. 101-202, 2007.
    [33] J. Bai and Y. Yao, "Highly efficient anisotropic chiral plasmonic
    metamaterials for polarization conversion and detection," ACS Nano,
    vol. 15, no. 9, pp. 14263-14274, 2021.
    [34] B. Gralak, S. Enoch, and G. Tayeb, "Anomalous refractive properties of
    photonic crystals," JOSA A, vol. 17, no. 6, pp. 1012 -1020, 2000.
    [35] M. Mansuripur, "Analysis of multilayer thin ‐film structures containing
    magneto‐optic and anisotropic media at oblique incidence using 2× 2
    matrices," Journal of Applied Physics, vol. 67, no. 10, pp. 6466 -6475,
    1990.
    [36] K. Rokushima and J. Yamakita, "Analysis of anisotropic dielectric
    gratings," JOSA, vol. 73, no. 7, pp. 901-908, 1983.
    [37] P. Velasquez, M. a. del Mar Sánchez -López, I. Moreno, D. Puerto, and
    F. Mateos, "Interference birefringent filters fabricated with low cost
    commercial polymers," American Journal of Physics, vol. 73, no. 4, pp.
    357-361, 2005.
    [38] J. W. Evans, "Solc birefringent filter," JOSA, vol. 48, no. 3, pp. 142 -
    145, 1958.
    [39] S. Meyer, B.-E. Benkelfat, and Q. Zou, "Hybrid liquid crystal
    Solc/Fabry-Perot filter for wavelength demultiplexing: optimum design
    parameters," in Micro-Opto-Electro-Mechanical Systems, 2000, vol.
    4075: SPIE, pp. 49-59.
    [40] I. Will and G. Klemz, "Generation of flat-top picosecond pulses by
    coherent pulse stacking in a multicrystal birefringent filter," Optics
    Express, vol. 16, no. 19, pp. 14922-14937, 2008.
    [41] M. Abuleil and I. Abdulhalim, "Narrowband multispectral liquid crystal
    tunable filter," Optics Letters, vol. 41, no. 9, pp. 1957 -1960, 2016.
    [42] X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, "Electro -optic
    Solc-type wavelength filter in periodically poled lithium niobate,"
    Optics Letters, vol. 28, no. 21, pp. 2115 -2117, 2003.
    54
    [43] R. H. Chu and J. J. Zou, "Transverse strain sensing based on optical
    fibre Solc filter," Optical Fiber Technology, vol. 16, no. 3, pp. 151 -155,
    2010.
    [44] Y. Zhao, Z.-R. Zhang, S.-C. Yan, and R.-J. Tong, "High-sensitivity
    temperature sensor based on reflective Solc -like filter with cascaded
    polarization maintaining fibers," IEEE Transactions on Instrumentation
    and Measurement, vol. 70, pp. 1-8, 2021.
    [45] E. Ertekin and A. Lakhtakia, "Sculptured thin film Š olc filters for
    optical sensing of gas concentration," The European Physical JournalApplied Physics, vol. 5, no. 1, pp. 45 -50, 1999.
    [46] A. Altaqui et al., "Mantis shrimp–inspired organic photodetector for
    simultaneous hyperspectral and polarimetric imaging," Science
    Advances, vol. 7, no. 10, p. eabe3196, 2021.
    [47] A. Yariv and P. Yeh, Optical waves in crystals. Wiley New York, 1984.
    [48] A. Messaadi et al., "Solc filters in a reflective geometry," Journal of
    Optics, vol. 19, no. 4, p. 045703, 2017.
    [49] G. Keiser, Optical communications essentials. McGraw -Hill Education,
    2003.
    [50] P. Yeh, "Transmission spectrum of a Solc filter," Optics
    Communications, vol. 29, no. 1, pp. 1 -6, 1979.

    QR CODE
    :::