跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林芳澤
Fang-Tse Lin
論文名稱: 利用全球電離層圖與DEMETER衛星觀測電離層沙塵暴效應
指導教授: 劉正彥
Jann-Yenq Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 95
中文關鍵詞: 電離層沙塵暴
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之目的是探討大氣中之沙塵暴對電離層電漿之影響。利用中尺度影像光譜儀(MODIS)之氣膠光學厚度觀察大氣沙塵暴之強度,而利用全球電離層全電子含量圖(GIM)和DEMETER衛星電漿資料,研究2008年5月撒哈拉沙漠沙塵暴期間電離層電漿變化。結果顯示,當2008年5月28日撒哈拉沙漠地區之MODIS氣膠光學厚度達到極大值時,該地區北方之GIM全電子含量以及DEMETER電子濃度和離子濃度亦同時達到極大值,而對應之DEMETER電子溫度則達到極小值。進一步採用全球空間蒐尋分析,顯示2008年5月28日GIM全電子含量和DEMETER電漿參數皆僅於撒哈拉沙漠北方出現極值。由於電漿準電中性之特性,GIM全電子含量和DEMETER電子濃度及離子濃度同時達極大值,而又因為庫倫冷卻機制,DEMETER電子與離子溫度呈現極小值。


    In this paper MODIS data, GIM (global ionosphere map) TEC (total electron content) and DEMETER satellite data are used to study ionospheric dust storm effects in May 2008. The aerosol optical depth (AOD), the LTT (latitude-time-TEC) and DEMETER daytime latitude-time-electron/ion density along the Sahara longitude simultaneously reach their maximum values on 28 May 2008. The DEMETER daytime latitude-time-electron temperature along the Sahara longitude simultaneously reach their minimum values on 28 May 2008. The LLT (latitude-longitude-TEC) map, latitude-longitude-electron/ion density specifically and significantly increases over the Sahara region on 28 May 2008. The latitude-longitude-electron temperature specifically and significantly decreases over the Sahara region on 28 May 2008. The simulation suggests that the dust storm may change the atmospheric electric field, which in turn modifies the plasma density over the Sahara area.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 v 表目錄 x 第一章 緒論 1 1-1沙塵暴 1 1-2研究動機 4 第二章 儀器與觀測 7 2-1中尺度影像光譜儀 7 2-2全球電離層圖 10 2-3 法國DEMETER衛星 12 第三章 結果與詮釋 18 3-1 MODIS氣膠光學厚度與全電子含量 18 3-2氣膠光學厚度與DEMETER參數 27 第四章 討論與結論 51 參考文獻 53 附錄A 56 附錄B 59

    Amiridis, V., Kafatos, M., Perez, C., Kazadzis, S., Gerasopoulos, E., Mamouri, R.E., Papayannis, A., Kokkalis, P., Giannakaki, E., Basart, S., Daglis. I., Zerefos, C. (2009). The Potential of the Synergistic Use of Passive and Active Remote Sensing Measurements for the Validation of a Regional Dust Model, Ann. Geophys., 27, 3155-3164, doi:10.5194/angeo-27-3155-2009.
    Christopher S.A., J. Wang, Q. Ji, S.C. Tsay, Estimation of diurnal shortwave dust aerosol radiative forcing during PRIDE, J Geophys Res, 108 (2003), p. D198596.
    Crozier, W.D., Dust devil properties. J. Geophys. Res., 75, 4583-4585, 1970.
    Cussac, T., Clair, M. A., Ultré-Guerard, P., Buisson, F., Lassalle-Balier, G., Ledu, M., ... & Rey, N. (2006). The DEMETER microsatellite and ground segment. Planetary and Space Science, 54(5), 413-427.
    Freier, G.D. (1960). The electric field of a large dust devil. J . Geophys. Res., 65, 3504.
    Gregory T. Delory, William M. Farrell, Sushil K. Aterya, Nilton O. Renno, Ah-San Wong, Steven A. Cummer, Davis D. Sentman, John R. Marshall, Scot C.R. Rafkin, and David C. Catling, Oxidant Enhancement in Martian Dust Devils and Storms: Storm Electric Fields and Electron Dissociative Attachment, ASTROBIOLOGY Volume 6, Number 3, 2006.
    Haywood J.M., B.T. Johnson, S.R. Osborne, J. Mulcahy, M.E. Brooks, M.A.J. Harrison, et al. Observations and modelling of the solar and terrestrial radiative effects of Saharan dust: a radiative closure case-study over oceans during the GERBILS campaign, Q J R Meteorol Soc, 137 (2011), pp. 1211–1226.
    Huang J.Q., Fu, J. Su, Q. Tang, P. Minnis, Y. Hu, et al. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liu radiation model with CERES constraints, Atmos Chem Phys, 9 (2009), pp. 4011–4021.
    Husar R.B., J.M. Prospero, L.L. Stowe, Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product, J Geophys Res, 102 (1997), pp. 16889–16909.
    J.-P. Lebreton, S. Stverak, P. Travnicek, M. Maksimovic, D. Klinge, S. Merikallio, D. Lagoutte, B. Poirier, P.-L. Blelly, Z. Kozacek, M. Salaquarda, The ISL Langmuir probe experiment processing onboard DEMETER:Scientific objectives, description and first results, Planetary and Space Science 54 (2006) 472–486.
    J.J. Berthelier, M. Godefroy, F. Leblanc, E. Seran, D. Peschard, P. Gilbert, J. Artru, IAP, the thermal plasma analyzer on DEMETER, Planetary and Space Science 54 (2006) 487–501.
    Kakinami, Y., S. Watanabe, J.-Y. Liu, and N. Balan (2011), Correlation between electron density and temperature inthe topside ionosphere, J. Geophys. Res., 116, A12331, doi:10.1029/2011JA016905.
    Kamra, A.K. (1972). Measurements of the electrical properties of dust storms. J. Geophys. Res., 77, 5856-5869.
    Kamra, A.K. (1977). Effect of dust-raising winds on the atmospheric electric field, in Electrical Processes in Atmosphere, edited by H. Dolezalek and R. Reiter, pp. 168-174, Steinkopff, Darmstadt, Germany.
    Klein, H., Nickovic, S., Haunold, W., Bundke, U., Nillius, B., Ebert, M., Weinbruch, S., Schuetz, L., Levin, Z., Barrie, L.A., Bingemer, H. (2010). Saharan dust and ice nuclei over Central Europe. Atmospheric Chemistry Physics Discussions, 10, 14993-15022.
    Liu X., Z.-Y. Yin, X. Zhang, X. Yang Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions, J Geophys Res, 109 (2004), p. D16210 http://dx.doi.org/10.1029/2004JD004615.
    Melnik, O., and M. Parrot, Electrostatic discharge in Martian dust storms. J. Geophys. Res., 103, 29107-29118, 1998.
    Perrone M.R., A.M. Tafuro, S. Kinne, Dust layer effects on the atmospheric radiative budget and heating rate profiles, Atmos Environ, 59 (2012), pp. 344–354.
    Pulinets, S. A. (2009). Physical mechanism of the vertical electric field generation over active tectonic faults, Advances in Space Research, 44(6), 767-773.
    Satheesh S.K., S. Deepshikha, J. Srinivasan Impact of dust aerosol on Earth-atmosphere clear-sky albedo and its short wave radiative forcing over Africa and Arabian regions. Int J Remote Sens, 27 (2002), pp. 1691–1706.
    Schaer, S. (1997). How to use CODE’s global ionosphere maps. Astronomical Institute, University of Berne, 1-9.
    Sikka D.R., Desert climate and its dynamics Curr Sci, 72 (1) (1997), pp. 35–46.
    Srivastava, A. K., Soni, V. K., Singh, S., Kanawade, V. P., Singh, N., Tiwari, S., & Attri, S. D. (2014). An early South Asian dust storm during March 2012 and its impacts on Indian Himalayan foothills: A case study. Science of The Total Environment, 493, 526-534.
    Stow, C.D. (1969). Dust and sand storm electrification. Weather, 24, 134-140.
    Tanré D., J. Haywood, J. Pelon, J.F. Léon, B. Chatenet, P. Formenti, et al. Measurement and modeling of the Saharan dust radiative impact: overview of the Saharan Dust Experiment (SHADE), J Geophys Res, 108 (D18) (2003), p. D8574.

    Tegen I., A.A. Lacis, I. Fung, The influence on climate forcing of mineral aerosols from disturbed soils, Nature, 380 (6573) (1996), pp. 419–422.
    Tramutoli, V. et al., Investigating the impact of Mt. Etna eruptions and Saharan dust events on ionospheric perturbations revealed by DEMETER, to be submitted, 2016.
    Ulanowski, Z., Bailey, J., Lucas, P. W., Hough, J. H., & Hirst, E. (2007). Alignment of atmospheric mineral dust due to electric field. Atmospheric Chemistry and Physics, 7(24), 6161-6173.
    Washington R., M. Todd, N.J. Middleton, A.S. Goudie, Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations, Ann Assoc Am Geogr, 93 (2) (2003), pp. 297–313.
    黃靖琪,「利用DEMETER衛星與全球電離層圖研究汶川地震電離層前兆」,國立中央大學,碩士論文,民國104年。
    邱義程,「利用福爾摩沙衛星三號觀測火山爆發效應」,國立中央大學,碩士論文,民國104年。
    張國恩,「MTSAT-1R衛星資料在東亞沙塵暴監測及氣膠光學厚度反演之探討」,國立中央大學,碩士論文,民國99年

    QR CODE
    :::