| 研究生: |
沈佳俞 Chia-Yu Shen |
|---|---|
| 論文名稱: |
磁性二氧化鈦複合顆粒的製備和特性分析 Synthesis and characterization of magnetite/titanium dioxide composite nanoparticles |
| 指導教授: |
秦靜如
Ching-Ju Chin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 光觸媒 、奈米顆粒 、銳鈦礦 、溶膠-凝膠法 、磁性二氧化鈦 |
| 外文關鍵詞: | sol-gel, anatase, nano-particles, magnetic TiO2 composite nanoparticles, photocatalysts |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米光觸媒能夠有效分解污染物,然而奈米光觸媒顆粒由於粒徑太小,有不易自反應系統中分離回收再利用的問題,特别是在工業廢水的光催化處理,光催化劑的顆粒流失,限制了光催化反應在實廠上的應用。為了確保在較高光催化效率之前提下解决光觸媒顆粒的分離與回收這一關鍵問题,本研究旨在製備具有磁性的光觸媒顆粒,以期利用簡單的外加磁場來回收懸浮的二氧化鈦顆粒。採用共沉澱法制備出Fe3O4磁性奈米顆粒,以界面活性劑(SDS)控制磁性顆粒大小,再以溶膠-凝膠法合成奈米磁性二氧化鈦複合顆粒,並利用XRD、TEM、SQUID、ICP-AES和ASAP對其進行結構分析,以探討不同製備條件對於磁性二氧化鈦複合顆粒特性之影響。經由SQUID的分析結果顯示,酸洗步驟確實能將複合顆粒表面的鐵粉洗去,但結果仍然滿足磁性分離的要求;煅燒前後並不會對磁性二氧化鈦複合顆粒的飽和磁化率有所影響。另外,使用自製的TiO2 particles和magnetic TiO2 composite particles兩種光觸媒進行甲醇的分解實驗後,結果顯示,在光照期間,甲醛生成濃度皆隨時間有呈現線性增加的趨勢,其中TiO2 particles的甲醛生成速率明顯高於magnetic TiO2 composite particles的數值,但本研究所製備的磁性二氧化鈦,其產生自由基的速率優於文獻中包覆形之磁性二氧化鈦達2倍之多。
Photocatalysts assist decomposition of pollutants more effectively. However, particle size of nano-photocatalyst is usually too small to be separated and recycled from the reaction system, especially for wastewater treatment. These disadvantages lead to loss of photocatalyst particles and application of photocatalysis in scale-up is thus limited. The main objective of this research is to preparing magnetic TiO2 composite nanoparticles, which can be recycled by using external magnetic field. Magnetite nanoparticles were synthesized by chemical co-precipitation and the size was controlled by adding surfactant. The magnetic TiO2 composite nanoparticles were synthesized by sol-gel method. The composite nanoparticles were characterized by XRD, TEM, SQUID, ICP-AES and ASAP to understand the effects of preparation conditions on the properties of composite nanoparticles. The results of SQUID confirmed that acid-wash dissolved Fe3O4 nanoparticles on the surface of composite nanoparticles and the magnetic susceptibility was thus decreased. Still, the magnetic property of the particles is acceptable for magnetic separation. Calcination did not affect magnetic susceptibility of magnetic TiO2 composite particles. Decomposition of methanol by TiO2 nanoparticles and magnetic TiO2 composite nanoparticles were carried out to compare their photocatalytic ability. HCHO concentration displayed linear increase with reaction time. The formation rate of HCHO when pure TiO2 nanoparticles were used was higher than that when magnetic TiO2 composite nanoparticles were used as catalysts.
1. R. J. Watts, S. Kong, and W. Lee, “Sedimentation and reuse of titanium dioxide: application to suspended-photocatalyst reactors,” Journal of Environmental Engineering, 121, pp.730-735 (1995).
2. D. Feng, C. Aldrich, and H. Tan, “Removal of heavy metal ions by carrier magnetic separation of adsorptive particulates,” Hydrometallurgy, 56, pp.359-368 (2000).
3. Y. Sakai, T. Miama, and F. Takahashi, “Simultaneous removal of organic and nitrogen compounds in intermittently aerated activated sludge process using magnetic separation,” Water Research, 31, pp.2113-2116 (1997).
4. C. L. Chun and J. W. Park, “Oil spill remediation using magnetic separation,” Journal of Environmental Engineering, 127, pp.443-449 (2001).
5. C. J. Chin, P. W. Chen, and L. J. Wang, “Removal of nanoparticles from CMP wastewater by magnetic seeding aggregation,” Chemosphere, 63, pp.1809-1813 (2006).
6. 范振國,「以磁種凝絮法處理暴雨期高濁度原水」,碩士論文,中央大學環境工程研究所,中壢,(2007)。
7. Y. Nosaka and M. A. Fox, “Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width,” Journal of Physical Chemistry, 92, pp.1893-1897 (1988).
8. J. C. Garcia and K. Takashima, “Photocatalytic degradation of imazaquin in an aqueous suspension of titanium dioxide,” Journal of Photochemistry and Photobiology A: Chemistry, 155, pp.215-222 (2003).
9. L. L. Lifongo, D. J. Bowden, and P. Brimblecombe, “Photodegradation of haloacetic acids in water,” Chemosphere, 55, pp.467-476 (2004).
10.D. A. Friesen, L. Morello, J. V. Headley, and C. H. Langford, “Factors influencing relative efficiency in photo-oxidations of organic molecules by CsPW12O40 and TiO2 colloidal photocatalysts,” Journal of Photochemistry and Photobiology A: Chemistry, 133, pp.213-220 (2000).
11.I. Ilisz and A. Dombi, “Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. Ⅱ: Effect of charge-trapping species on product distribution,” Applied Catalysis A: General, 180, pp.35-45 (1999).
12.N. Guettaï and H. Ait Amar, “Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. PartⅠ: Parametric study,” Desalination, 185, pp.427-437 (2005).
13.T. N. Obee and S. O. Hay, “Effects of moisture and temperature on the photooxidation of ethylene on titania,” Environmental Science and Technology, 31, pp.2034-2038 (1997).
14.A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Hermann, “Photocatalytic degradation pathway of methylene blue in water” Applied Catalysis B: Environmental, 31, pp.145-157 (2001).
15.H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Herrmann, “Photocatalytic degradation of various types of dyes (Alizarin S, crocein orange g, methyl red, congo red, methylene blue) in water by UV-irradiated titania,” Applied Catalysis B: Environmental, 39, pp.75-90 (2002).
16.D. Bahanemann, D. Bockelmann, and R. Goslich, “Mechanistic studies of water detoxification in illuminated TiO2 suspensions,” Solar Energy Materials and Solar Cells, 24, pp.564-583 (1991).
17.T. A. McMurry, J. A. Byrne, P. S. M. Dunlop, J. G. M. Winkelman, B. R. Eggins, and E. T. McAdams, “Instrinsic kinetics of photocatalytic oxidation of formic and oxalic acid on immobilized TiO2 films,” Applied Catalysis A: General, 262, pp.105-110 (2004).
18.M. R. Dhananjeyan, R. Annapoorani, and R. Renganathan, “A comparative study on the TiO2 mediated photo-oxidation of uracil, thymine and 6-methyluracil,” Journal of Photochemistry and Photobiology A: Chemistry, 109, pp.147-153 (1997).
19.C. Zhu, L. Wang, L. Kong, X. Yang, S. Zheng, F. Chen, F. Maizhi, and H. Zong, “Photocatalytic degradation of AZO dyes by supported TiO2 + UV in aqueous solution,” Chemosphere, 41, pp.303-309 (2000).
20.G. A. Epling and C. Lin, “Photoassisted bleaching of dyes utilizing TiO2 and visible light,” Chemosphere, 46, pp.561-570 (2002).
21.C. Kormann, D. W. Bahnemann, and M. R. Hoffmann, “Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions,” Environmental Science and Technology, 25, pp.494-500 (1991).
22.P. Salvador, M. L. Gar, and Godlez, “Catalytic role of lattice defects In the photoassisted oxldatlon of water at (001) n-TiO2 Rutile,” Journal of Physical Chemistry, 96. pp.10349-10353 (1992).
23.Q. Zhang, L. Gao, and J. Guo, “Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis,” Applied Catalysis B: Environmental, 26, pp.207-215 (2000).
24.垰田博史著,張晶、楊健譯 光觸媒圖解,商周出版,(2003).
25.U. Diebold, “The surface science of titanium dioxide,” Surface Science Reports, 48, pp.53-229 (2003).
26.W. Shen, W. Zhao, F. He, and Y. Fang, “TiO2-based photocatalysis and its applications for wastewater treatment,” Progress in Chemistry, No.4 1998.
27.H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Y. Teraoka, H. Hatano, S. Ehara, K. Kikui, and L. Palmisano, “Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts,” Research on Chemical Intermediates, 20, pp.815-823 (1994).
28.M. A. Fox and M. T. Dulay, “Heterogeneous photocatalysis,” Chemical Reviews, 93, pp.341-357 (1993).
29.E. R. Bandala, S. Gelover, M. T. Leal, and C. Arancibia-Bulnes, A. Jimenez, and C. A. Estrada, “Solar photocatalytic degradation of aldrin,” Catalysis Today, 76, pp.189-199 (2002).
30.C. S. Turchi, and D. F. Ollis, “Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack,” Journal of Catalysis, 122, pp.178-192 (1990).
31.D. M. Mattox, “Sol-gel derived, air-baked indium and tin oxide films,” Thin Solid Films, 204, pp.25-32 (1991).
32.葉世墉,「二氧化鈦的合成與光催化性質的研究」,碩士論文,中央大學化學工程與材料工程研究所,中壢,(2005).
33.K. Juengsuwattananon, A. Jaroenworaluck, T. Panyathanmaporn, S. Jinawath, and S. Supothina, “Effect of water and hydrolysis catalyst on the crystal structure of nanocrystalline TiO2 powders prepared by sol-gel method,” physica status solidi (a): Applications and Materials Science, 204, pp.1751–1756 (2007).
34.D. Bahnemann, A. Henglein, L. Spanhel, “Detection of the intermediates of Colloidal TiO2-catalysed Photoreactions,” Faraday Discussions of Chemical Society, 78, pp.151-163 (1984).
35.M. D. Ward and A. J. Bard, “Photocurrent enhancement via trapping of photogenerated electrons of TiO2 particles,” Journal of Physical Chemistry, 86, pp.3599-3605 (1982).
36.X. Zhang, H. Yang, F. Zhang, and K. Y. Chan, “Preparation and characterization of Pt–TiO2–SiO2 mesoporous materials and visible-light photocatalytic performance,” Materials Letters, 61, pp.2231-2234 (2007).
37.W. Choi, A. Termin, and M. R. Hoffmann, “The Role of Metal Ion Dopants in quantum-Sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics,” Journal of Physical Chemistry, 98, pp.13669-13679 (1994).
38.A. M. Ektessabi, “Surface modification of biomedical implants using ion-beam-assisted sputter deposition,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 127/128, pp.1008-1014 (1997).
39.A. Hagfeldt and M. Gratzel, “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, 95, pp.49-68 (1995).
40.D. Beydoun and R. Amal, “Implications of heat treatment on the properties of a magnetic iron oxidetitanium doxide photocatalyst,” Materials Science and Engineering B, 94, pp.71-81 (2002).
41.S. Chatterjee, S. Sarkar, and S. N. Bhattacharyya, “Colloidal ferric oxide: a new photosensitizer for grafting acrylamide onto cellulose acetate films,” Polymer, 34 (9), pp.1979-1980 (1993).
42.C. Pulgrain and J. Kiwi, “Iron oxide-mediated degradation, photodegradation, and biodegradation of aminophenols,” Langmuir, 11, pp.519-526 (1995).
43.Z. Zhang, C. Boxall, and G. H. Kelsall, “Photoelectrophoresis of colloidal iron oxides,” Colloids and Surface A: Physicochemical and Engineering Aspects, 73, pp.145-163 (1993).
44.P. Madhusudhan Rao, B. Viswanathan, and R. P. Viswanath, “Strong metal support interaction state in the Fe/TiO2 system — an XPS study,” Journal of Material Science, 30, pp.4980-4985 (1995).
45.A. B. Rives, T. S. Kulkarni, and A. L. Schwaner, “N2 and H2O adsorption on combinations of TiO2 and Fe2O3,” Langmuir, 9, pp.192-196 (1993).
46.D. E. Scaife, “Oxide semiconductors in photoelectrochemical conversion of solar energy,” Solar Energy, 25, pp.41-54 (1980).
47.Z. Zhang, C.-C. Wang, R. Zakaria, and J. Y. Ying, “Role of particle size in nanocrystalline TiO2-based photocatalysts,” Journal of Physical Chemistry B, 102, pp.10871-10878 (1998).
48.J. A. Navío, G. Colón, M. Macías, C. Real, and M. I. Litter, “Iron-doped titania semiconductor powders prepared by a sol-gel method. Part Ι: synthesis and characterization,” Applied Catalysis A: General, 177, pp.111-120 (1999).
49.L. Palmisano, V. Augugliam, A. Sclafani, and M. Schiavello, “Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation,” Journal of Physical Chemistry, 92, pp.6710-6713 (1988).
50.J. Soria, J. C. Conesa, V. Augugliaro, L. Palmisano, M. Schiavello, and A. Sclafani, “Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions,” Journal of Physical Chemistry, 95, pp.274-282 (1991).
51.G. Martra, S. Coluccia, L. Marchese, V. Augugliaro, V. Loddo, L. Palmisano, and M. Schiavello, “The role of H2O in the photocatalytic oxidation of toluene in vapour phase on anatase TiO2 catalyst: A FTIR study,” Catalysis Today, 53, pp.695-702 (1999).
52.J. Herrmann, C. Gillard, J. Disdier, C. Lehaut, S. Malato, and J. Blanco, “New industrial titania photocatalysts for the solar detoxification of water containing various pollutants,” Applied Catalysis B: Environmental, 35, pp.281-294 (2002).
53.D.-C. Hurum, A.-G. Agrios, S.-E. Crist, K.-A. Gray, T. Rajh, and M.-C. Thurnauer, “Probing reaction mechanisms in mixed phase TiO2 by EPR,” Journal of Electron Spectroscopy and Related Phenomena, 150, pp.155-163 (2006).
54.J.-F. Jen, M.-F. Leu, and T.-C. Yang, “Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography,” Journal of Chromatography A, 796, pp.283-288 (1998).
55.X. Luo and D.-C. Lehotay, “Determination of hydroxyl radical using salicylate as a trapping agent by gas chromatography-mass spectrometry,” Clinical Biochemistry, 30, pp.41-46 (1996).
56.J. Marugán, D. Hufschmidt, M.-J. López-Muňoz, V. Selzer, and D. W. Bahnemann, “Photonic efficiency for methanol photooxidation and hydroxyl radical generation on silica-supported TiO2 photocatalysts,” Applied Catalysis B: Environmental, 62, pp.201-207 (2006).
57.P. Courtine and E. Bordes, “Mode of arrangement of components in mixed vanadia catalyst and its bearing for oxidation catalysis,” Applied Catalysis A: General, 157, pp. 45-65 (1997).
58.Y. Wang and C.-S. Hong, “TiO2-mediated photomineralization of 2-chloro-biphenyl: The role of O2,” Water Research, 34, pp. 2791-2797 (2000).
59.郭彥廷,「導電高分子與二氧化鈦之奈米複合材料的合成與性質探討」,碩士論文,中央大學化學研究所,中壢,(2002)。
60.黃欣栩,「UV/TiO2程序光催化降解水中單氯苯之研究」,博士論文,中央大學環境工程研究所,中壢,(2008)。
61.王淑娟,「液相光催化反應之氫氧自由基生成量測-以甲醇為自由基捕捉劑」,碩士論文,高雄第一科技大學環境與安全衛生工程系,高雄,(2006)。
62.L. Sun, and J. R. Bolton, “Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions,” Journal of Physical Chemistry, 100, pp. 4127-4134 (1996).
63.D. Beydoun and R. Amal, “Novel photocatalyst: titania-coated magnetite. Activity and photodissolution,” Journal of Physical Chemistry B, 104, pp. 4387-4396 (2000).
64.J. A. Navío, G. Colón, M. Trillas, J. Peral, X. Domènech, J. J. Testa, J. Padrón, D. Rodríguez, and M. I. Litter, “Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method,” Applied Catalysis B: Environmental, 16, pp. 187-196 (1998).
65.M. I. Litter and J. A. Navío, “Comparison of the photocatalytic efficiency of TiO2, iron oxides and mixed Ti(IV)---Fe(III) oxides: photodegradation of oligocarboxylic acids,” Journal of Photochemistry and Photobiology A: Chemistry, 84, pp. 183-193 (1994).
66.H. Fujii, M. Ohtaki, K. Eguchi, and H. Arai, “Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO2 gel as a stable oxide semiconducting matrix,” Journal of Molecular Catalysis A: Chemical, 129, pp. 61-68 (1998).
67.A. Henglein, “Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles,” Chemical Reviews, 89, pp. 1861-1873 (1989).
68.S. Chatterjee, S. Sarkar, and S. N. Bhattacharyya, “Colloidal ferric oxide: a new photosensitizer for grafting acrylamide onto cellulose acetate films,” Polymer, 34, pp. 1979-1980 (1993).
69.A. Ansari, J. Peral, X. Domènech, Rafael Rodríguez-Clemente, A. Roig, and E. Molins, “Photo-oxidation of sulfite ions in the presence of some iron oxides,” Journal of Photochemistry and Photobiology A: Chemistry, 87, pp. 121-125 (1995).