跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃士芳
Shih-fang Huang
論文名稱: 以正十八烷製備相轉移材料微膠囊
Preparation of PCM microcapsules containing n-octadecane
指導教授: 陳暉
Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 137
中文關鍵詞: 相轉移材料正十八烷苯乙烯甲基丙烯酸甲酯能量儲存材料微膠囊
外文關鍵詞: Phase change material, Microcapsule, Energy storage materials, Methyl methacrylate, Styrene, n-Octadecane
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用懸浮聚合法與無乳化劑乳化聚合法以正十八烷製備相轉移材料微膠囊。微膠囊之殼物質為甲基丙烯酸甲酯(MMA)與苯乙烯(St)單體以及乙二醇二甲基丙烯酸酯(EGDMA)架橋單體之共聚物,以低溫微差掃描熱分析儀(DSC)、掃描式電子顯微鏡(SEM)、熱重損失分析儀(TGA)、傅立葉轉換紅外線光譜儀(FTIR)來探討製備條件對所生成之微膠囊的潛熱值、產率、包覆效率、外觀、粒徑和熱穩定的影響。
    懸浮聚合法即將單體、交聯劑、相轉移材料及油性起始劑分散在含有聚乙烯醇(PVA)穩定劑之水溶液後,以乳化均質機攪拌再行聚合反應。由實驗結果顯示,MMA與St需同時存在且添加交聯劑的情況下,才可製備出152.3 J/g高潛熱值之相轉移材料微膠囊,其相轉移材料含量為60%,所製備出微膠囊之平均粒徑為148 nm,由TGA測試結果可知,相轉移材料微膠囊的熱重損失曲線比正十八烷的熱重損失曲線往高溫移動,由此可知微膠囊化後,可提高耐熱性質。
    無乳化劑乳化聚合法即在St與EGDMA存在下,並以沸騰狀態先行聚合反應,且在適當反應時間下添加St、MMA、EGDMA與正十八烷,並再行聚合反應。實驗結果顯示,兩階段皆需添加交聯劑,且在兩階段之間暫停加熱下,可成功製備潛熱值為94.4 J/g之相轉移材料微膠囊,相轉移材料含量為37.2%,平均粒徑為179 nm。由TGA測試結果可知,相轉移材料微膠囊的熱重損失曲線比正十八烷的熱重損失曲線往高溫移動,由此可知微膠囊化後,可提高耐熱性質。另外,利用此方法製備相轉移材料微膠囊可縮短聚合反應時間至2小時。


    In this study, the microencapsulated n-octadecane phase change materials (microPCMs) were prepared by suspension polymerization or emulsion-free polymerization. Methyl methacrylate and styrene were used as monomers. EGDMA was used as cross-linking agent. The thermal physical properties, surface morphology, thermal stabilities ,and chemical composition of microcapsules were measured by differential scanning calorimetry (DSC), scanning electron microscope (SEM), thermo gravimetric analysis (TGA) ,and fourier transform infrared spectroscopy (FTIR).
    In the first part, monomers, cross-linking agent, PCM, and initiator were mixed and added in PVA solution. The suspension polymerization was occurred after homogenlizing the above solution. The results showed that the highest enthalpy (152.3 J/g) and the PCM content (60%) of microPCMs was obtained in the presence of EGDMA. The average diameter of the microPCMs was 148 nm.
    In the second part, the microPCMs were prepared by the emulsion-free polymerization at boiling state. Monomers, cross-linking agent were mixed and polymerized at suitable conversion. Then monomers, cross-linking agent ,and PCM were added and ploymerized again. The results showed that the highest enthalpy (94.4 J/g) and the PCM content (37.2%) of microPCMs was obtained by adding EGDMA at both steps. The average diameter of the microPCMs was 179 nm. The polymerization time could reduce to 2 h.
    In addition, TGA analysis showed the weight loss curves of microPCMs prepared by both methods were higher than that of n-octadecane. Based on the results, we propose that the microPCMs possess good potential for thermal energy storage.

    摘要...i Abstract...ii 致謝...iii 目錄...iv 圖目錄...vii 表目錄...xii 第一章 緒論...1 1-1 相轉移材料...1 1-2微膠囊化技術...6 1-3相轉移材料微膠囊之發展...8 1-4研究動機及目的...12 第二章 實驗...13 2-1 實驗藥品...13 2-2 實驗儀器...14 2-3 以懸浮聚合法製備相轉移材料微膠囊...15 2-4 以沸騰法製備相轉移材料微膠囊...17 2-5 相轉移材料微膠囊之物性測試...19 2-5-1 低溫微差掃描熱分析儀(DSC)...19 2-5-2 熱重損失分析儀(TGA)...19 2-5-3 掃描式電子顯微鏡(SEM)...19 2-5-4 傅立葉轉換紅外線光譜儀(FTIR)...19 第三章 結果與討論...20 3-1 相轉移材料之基本性質...20 3-1-1相轉移材料之低溫微差掃描熱分析...21 3-1-2相轉移材料之熱重損失分析...22 3-1-3相轉移材料之傅立葉轉換紅外線光譜儀分析...23 3-2以懸浮聚合法製備相轉移材料微膠囊...24 3-2-1單體比例對微膠囊之影響...24 3-2-2反應時間對微膠囊之影響...30 3-2-3起始劑濃度對微膠囊之影響...36 3-2-4交聯劑濃度對微膠囊之影響...41 3-2-5穩定劑聚合度對微膠囊之影響...47 3-2-6 BP-17對微膠囊之影響...53 a.不同穩定劑濃度...53 b.不同相轉移材料含量...59 3-2-7 BP-24對微膠囊之影響...64 a.不同穩定劑濃度...64 b.不同相轉移材料含量...70 3-2-8 BP-17與BP-24結果之比較...78 3-3以沸騰法製備相轉移材料微膠囊...79 3-3-1第一階段單體轉化率與時間之關係...79 3-3-2交聯劑對微膠囊之影響...82 3-3-3第一階段反應時間對微膠囊之影響...87 3-3-4第二階段停止加熱時間對微膠囊之影響...92 3-3-5第二階段單體重量對微膠囊之影響...98 a.第一階段單體重量不變...98 b.第一階段單體重量降至一半...103 3-4結果與文獻之比較...111 第四章 結論...113 參考文獻...114

    1. Sharma A, Tyagi VV, Chen CR, Buddhi D: Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 2009, 13(2):318-345.
    2. Zalba B, Marin JM, Cabeza LF, Mehling H: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 2003, 23(3):251-283.
    3. 陳奇沛,「正十八酸相轉移材料製備之研究」,國立中央大學化學工程與材料工程學系碩士論文 (2010)。
    4. Sari A, Alkan C, Karaipekli A: Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage. Appl Energ 2010, 87(5):1529-1534.
    5. Alkan C, Sari A, Karaipekli A: Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energ Convers Manage 2011, 52(1):687-692.
    6. 徐宏興,張志鵬,W/O型苯乙烯微膠囊製放性之研究,華岡紡織期刊,第十卷,第二期,134-139(2003)
    7. 陳宏恩,新時代的溫控興紡織品,化工技術,第十三卷,第三期,205-213(2005)
    8. Medrano M, Yilmaz MO, Nogues M, Martorell I, Roca J, Cabeza LF: Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Appl Energ 2009, 86(10):2047-2055.
    9. Ismail KAR, Henriquez JR: Thermally effective windows with moving phase change material curtains. Appl Therm Eng 2001, 21(18):1909-1923.
    10. Kuznik F, David D, Johannes K, Roux JJ: A review on phase change materials integrated in building walls. Renew Sust Energ Rev 2011, 15(1):379-391.
    11. Lin KP, Zhang YP, Di HF, Yang R: Study of an electrical heating system with ductless air supply and shape-stabilized PCM for thermal storage. Energ Convers Manage 2007, 48(7):2016-2024.
    12. Benli H, Durmus A: Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating. Sol Energy 2009, 83(12):2109-2119.
    13. Raj VAA, Velraj R: Review on free cooling of buildings using phase change materials. Renew Sust Energ Rev 2010, 14(9):2819-2829.
    14. Saman W, Bruno F, Halawa E: Thermal performance of PCM thermal storage unit for a roof integrated solar heating system. Sol Energy 2005, 78(2):341-349.
    15. Chen C, Guo HF, Liu YN, Yue HL, Wang CD: A new kind of phase change material (PCM) for energy-storing wallboard. Energ Buildings 2008, 40(5):882-890.
    16. Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T: Development of phase change materials based microencapsulated technology for buildings: A review. Renew Sust Energ Rev 2011, 15(2):1373-1391.
    17. Zhang YP, Zhou GB, Lin KP, Zhang QL, Di HF: Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Build Environ 2007, 42(6):2197-2209.
    18. Nuckols ML: Analytical modeling of a diver dry suit enhanced with micro-encapsulated phase change materials. Ocean Eng 1999, 26(6):547-564.
    19. Lane GA: In: Proceedings of 2nd Southeastern Conference on. Application of Solar Energy 1976, 442-450
    20. Stark P: PCM-impregnated polymer microcomposites for thermal energy storage. SAE (Soc Automotive Eng). Trans 1990,99:571–88.
    21. Fan YF, Zhang XX, Wang XC, Li J, Zhu QB: Super-cooling prevention of microencapsulated phase change material. Thermochim Acta 2004, 413(1-2):1-6.
    22. Fan YF, Zhang XX, Wu SZ, Wang XC: Thermal stability and permeability of microencapsulated n-octadecane and cyclohexane. Thermochim Acta 2005, 429(1):25-29.
    23. Zhang XX, Fan YF, Tao XM, Yick KL: Crystallization and prevention of supercooling of microencapsulated n-alkanes. J Colloid Interf Sci 2005, 281(2):299-306.
    24. Su JF, Wang LX, Ren L, Huang Z, Meng XW: Preparation and characterization of polyurethane microcapsules containing n-octadecane with styrene-maleic anhydride as a surfactant by interfacial polycondensation. J Appl Polym Sci 2006, 102(5):4996-5006.
    25. Baek KH, Lee JY, Kim JH: Core/Shell structured PCM nanocapsules obtained by resin fortified emulsion process. J Disper Sci Technol 2007, 28(7):1059-1065.
    26. Sanchez L, Sanchez P, de Lucas A, Carmona M, Rodriguez JF: Micro encapsulation of PCMs with a polystyrene shell. Colloid Polym Sci 2007, 285(12):1377-1385.
    27. Su JF, Wang LX, Ren L: Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation: Influence of styrene-maleic anhydride as a surfactant. Colloid Surface A 2007, 299(1-3):268-275.
    28. Taguchi Y, Yokoyama H, Kado H, Tanaka M: Preparation of PCM microcapsules by using oil absorbable polymer particles. Colloid Surface A 2007, 301(1-3):41-47.
    29. Li W, Zhang XX, Wang XC, Niu JJ: Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content. Mater Chem Phys 2007, 106(2-3):437-442.
    30. Fang YT, Kuang SY, Gao XN, Mang ZG: Preparation and characterization of novel nanoencapsulated phase change materials. Energ Convers Manage 2008, 49(12):3704-3707.
    31. Sanchez L, Sanchez P, Carmona M, de Lucas A, Rodriguez JF: Influence of operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization. Colloid Polym Sci 2008, 286(8-9):1019-1027.
    32. Alkan C, Sari A, Karaipekli A, Uzun O: Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energ Mat Sol C 2009, 93(1):143-147.
    33. Sari A, Alkan C, Karaipekli A, Uzun O: Microencapsulated n-octacosane as phase change material for thermal energy storage. Sol Energy 2009, 83(10):1757-1763.
    34. Fang GY, Li H, Yang F, Liu X, Wu SM: Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J 2009, 153(1-3):217-221.
    35. Palanikkumaran M, Gupta KK, Agrawal AK, Jassal M: Highly Stable Hexamethylolmelamine Microcapsules Containing n-Octadecane Prepared by In Situ Encapsulation. J Appl Polym Sci 2009, 114(5):2997-3002.
    36. Salaün F, Devaux E, Bourbigot S, Rumeau P: Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization. Chem Eng J 2009, 155(1-2):457-465.
    37. Shan XL, Wang JP, Zhang XX, Wang XC: Formaldehyde-free and thermal resistant microcapsules containing n-octadecane. Thermochim Acta 2009, 494(1-2):104-109.
    38. Zhang HZ, Wang XD: Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell. Colloid Surface A 2009, 332(2-3):129-138.
    39. Bayés-García L, Ventolà L, Cordobilla R, Benages R, Calvet T, Cuevas-Diarte MA: Phase Change Materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability. Sol Energ Mat Sol C 2010, 94(7):1235-1240.
    40. Fang GY, Li H, Liu X, Wu SM: Experimental Investigation of Performances of Microcapsule Phase Change Material for Thermal Energy Storage. Chem Eng Technol 2010, 33(2):227-230.
    41. Gao GB, Qian CX, Gao MJ: Preparation and characterization of hexadecane microcapsule with polyurea-melamine formaldehyde resin shell materials. Chinese Chem Lett 2010, 21(5):533-537.
    42. Zhang SO, Niu JL: Experimental investigation of effects of supercooling on microencapsulated phase-change material (MPCM) slurry thermal storage capacities. Sol Energ Mat Sol C 2010, 94(6):1038-1048.
    43. Jin Y, Lee WP, Musina Z, Ding YL: A one-step method for producing microencapsulated phase change materials. Particuology 2010, 8(6):588-590.
    44. Zhang HZ, Wang XD, Wu DZ: Silica encapsulation of n-octadecane via sol-gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J Colloid Interf Sci 2010, 343(1):246-255.
    45. Ma SD, Song GL, Li W, Fan PF, Tang GY: UV irradiation-initiated MMA polymerization to prepare microcapsules containing phase change paraffin. Sol Energ Mat Sol C 2010, 94(10):1643-1647.
    46. Sanchez-Silva L, Rodriguez JF, Romero A, Borreguero AM, Carmona M, Sanchez P: Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation. Chem Eng J 2010, 157(1):216-222.
    47. Li W, Song GL, Tang GY, Chu XD, Ma SD, Liu CF: Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy 2011, 36(2):785-791.
    48. Sanchez-Silva L, Rodriguez JF, Carmona M, Romero A, Sanchez P: Thermal and morphological stability of polystyrene microcapsules containing phase-change materials. J Appl Polym Sci 2011, 120(1):291-297.
    49. 林岩錫,魏麒書,相變材料微膠囊在紡織品上應用,紡織綜合研究期刊,第十四卷,第四期,359-364(2004)
    50. Zhang S, Zhao XW, Xu H, Zhu R, Gu ZZ: Fabrication of photonic crystals with nigrosine-doped poly(MMA-co-DVB-co-MAA) particles. J Colloid Interf Sci 2007, 316(1):168-174.
    51. Gu ZZ, Chen HH, Zhang S, Sun LG, Xie ZY, Ge YY: Rapid synthesis of monodisperse polymer spheres for self-assembled photonic crystals. Colloid Surface A 2007, 302(1-3):312-319.
    52. 羅名譽,「快速合成具核殼結構之均一粒徑次微米球與其表面改質之特性研究」,國立中央大學化學工程與材料工程學系碩士論文 (2009)。
    53. 張智中,「以溶膠-凝膠法製備有機無機混成相轉移材料微膠囊」,國立中央大學化學工程與材料工程學系碩士論文 (2006)。
    54. Bachtsi AR, Boutris CJ, Kiparissides C: Production of oil-containing crosslinked poly(vinyl alcohol) microcapsules by phase separation: Effect of process parameters on the capsule size distribution. J Appl Polym Sci 1996, 60(1):9-20.
    55. 楊雯欣,「懸浮聚合法製備相轉移材料微膠囊」,國立中央大學化學工程與材料工程學系碩士論文 (2007)。
    56. Zhang XX, Fan YF, Tao XM, Yick KL: Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater Chem Phys 2004, 88(2-3):300-307.
    57. Su JF, Wang LX, Ren L, Huang Z: Mechanical properties and thermal stability of double-shell thermal-energy-storage microcapsules. J Appl Polym Sci 2007, 103(2):1295-1302.
    58. Liu G, Xie B, Fu D, Wang Y, Fu Q, Wang D: Preparation of nearly monodisperse microcapsules with controlled morphology by in situ polymerization of a shell layer. J Mater Chem 2009, 19(36):6605-6609.

    QR CODE
    :::