| 研究生: |
林郁鈞 Yu-Chun Lin |
|---|---|
| 論文名稱: |
以離散元素法進行具鍵結顆粒材料之直剪試驗模擬 Numerical simulation in direct shear test using bonded particles |
| 指導教授: |
黃文昭
Wen-Chao Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 直接剪力試驗 、離散元素法 、鍵結強度 、主應力平面 、微觀 、變異係數 |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用直接剪力試驗來獲得土壤的工程特性是相當常見的方法,但一般直剪試驗盒不透明,不易觀察直剪盒內部在受剪過程的微觀破壞機制,且前人研究發現直剪試驗在剪動面應力分佈不均勻,因此本研究利用離散元素法,使用PFC2D軟體模擬直剪試驗。由於前人研究已探討無鍵結強度顆粒在不同微觀參數下對直剪試驗結果以及微觀力學機制的影響,因此本研究模擬具鍵結強度顆粒材料之直剪試驗,探討顆粒微觀參數對巨觀凝聚力與摩擦角的關係,並從中監測直剪試驗過程試體之應力分佈、孔隙率變化和鍵結斷鍵情形,分析剪動帶上的平均應力變異程度並觀察應力路徑與主應力平面的旋轉角度。
由直剪模擬結果可得知具鍵結顆粒材料之巨觀與微觀力學行為如下: (1) 顆粒粒徑越小則凝聚力越大、摩擦角越小,當鍵結強度越大時凝聚力也越大。(2)直剪模擬剪脹多來自於直剪盒右上及左下區域。(3)破壞時鍵結斷裂與剪應力極值多分佈於剪動帶上,且由整個試體觀察到張力破壞數目大於剪力破壞數目。(4)破壞時最大主應力面旋轉角度會介於50度到60度。(5)剪動帶上平均水平應力與垂直應力之變異係數越接近破壞則越大;剪應力之變異係數則越接近破壞越小越穩定。
Direct shear testing is among the most common laboratory tests for obtaining the engineering properties of soils. However, the microscopic behavior during direct shear test of this type of material is not always easy to monitor. Previous studies have found that the non-uniformity of the stress can be developed along the failure plane have been brought up by previous study. Therefore, a discrete element method is employed and the PFC2D is used to simulate the direct shear test in this study. Since prior researchers have been observed the influenced of the microscopic parameters and the microscopic behavior of the dry granular material during the direct shear test, I simulate the direct shear test by bonded-particle and investigate the related of the particles microscopic parameters and the macroscopic cohesion and friction angle in this study. I also monitor stress and porosity distribution, and bond break condition during direct shear test as well as analyze the variations of average stress, stress path and major principal plane along the pre-determined failure plane were also observed.
The following summaries are addressed: (1) smaller particles size has stronger cohesion and smaller friction angle, and greater bond forces have stronger cohesion; (2) the dilation of the overall particle assembly comes from the right of the upper shear box and left of the lower shear box; (3) most breaks of the bonds locate on the shear zone, and the number of normal bonds breaks exceeds that of the shear bonds breaks; (4) the directions of major principal plane ranges from 50 and to 60 degrees in the counterclockwise direction until the test specimen reaches failure; (5) the coefficients of variation of the horizontal and vertical stress become larger when near approaching the failure, and the coefficient of variation of the shear stress becomes smaller and more stable.
1. 宋丘言,「使用離散元素法進行乾砂直剪試驗模擬」,國立中央大學土木工程研究所碩士論文,中壢 (2012)。
2. 廖泓韻,「以微觀角度探討顆粒狀材料在直剪試驗下之力學行為」,國立中央大學土木工程研究所碩士論文,中壢(2013)。
3. Cundall, P.A., and Strack, O.D.L., “A discrete numerical model for granular assemblies.”Geotechnique, Vol. 29, No. 1, pp. 47-65 (1979)
4. Cui, L., and O’Sullivan C., “Exploring the macro- and micro-scale response characteristics of an idealized granular material in the direct shear apparatus.” Geotechnique, Vol. 56(7), pp 455-468 (2006).
5. Chang, Y.Y., Lee, C.J., Huang, W.J., Lin, M.L., Hung, W.Y., and Lin, Y.H.,“Use of centrifuge experiments and discrat element analysis to model the reverse fault slip, ”International Journal of Civil Engineering,Transaction B : Geotechnical Engineering, 11(2), pp. 79-89. (2013)
6. Deresiewicz, H., “Mechanics of Granular Matter.” Journal of Advances in Applied Mechanics, Vol. 5, pp. 233–306. (1958)
7. Dounias, G.T., and Potts, D.M., “Numerical analysis of drained direct and simple shear test.“ Journal of Geotechnical Engineering, Vol. 119, No. 12, pp.1870-1891 (1993).
8. Das, B.M., Principles of geotechnical engineering., 6th edition, Thomson Learning, Nashville, TN, USA (2006)
9. Itasca Consulting Group Inc., PFC2D, Version4.0 Manual, Minneapolis, MN: ICG (2008).
10. Masson, S. and Martinez, J. “Micromechanical analysis of the shear behavior of a granular material.” ASCE J. Engng Mech.127, No. 10, pp 1007–1016 (2001)
11. Potyondy, D. O.,and Cundall, P. A., “A bonded-particle model for rock.” International Journal of Rock Mechanics & Mining Sciences, Vol. 41, 1329–1364 (2004).
12. Jamiolkowski M., Ladd C.C., Germaine J.T., Lancellotta R.”New developments in field and laboratory testing of soils.” Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, pp. 57–153, (1985).
13. Saada, A.S., and Townsend, F.C., “State of the Art: Laboratory Strength Testing of Soils, in Laboratory Shear Strength of Soil.” STP 740 ASTM, Philadelphia PA USA, pp. 7-77 (1981).
14. Terzaghi, K., and Peck, R.B., “Soil mechanics in Engineering Practice.” Wiley, New York, New York, USA (1948).
15. Wang, J., and Gutierrez, M. “Discrete element simulations of direct shear specimen scale effects.” Geotechnique, Vol. 60(5), pp 395-409 (2010).
16. Yimsiri S., and Sogo K. “Micromechanics-based stress-strain behaviour of soils at small strains.” Geotechnique, Vol. 50(1), pp 559-571 (2000).
17. Zhang, L. and Thornton, C. “A numerical examination of the direct shear test.” Geotechnique, Vol. 57, No. 4,pp 343-354 (2007).