跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳珏龍
Jyue-Long Chen
論文名稱: 諧振電容控制之LLC諧振轉換器設計與實現
Design and Implementation of Resonant Capacitor Controlled LLC Resonant Converter
指導教授: 徐國鎧
Kuo-Kai Syu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 105
中文關鍵詞: LLC諧振轉換器升壓型功率因數修正器諧振電容控制輕載效率改善延長維持時間
外文關鍵詞: LLC resonant converter, boost power factor corrector, resonant capacitor control, light-load efficiency improvement, extend hold-up time
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研製一具功率因數修正之半橋LLC諧振轉換器,傳統LLC諧振轉換器具有輕載效率較低的問題,此問題通常會採用Burst-mode來解決,但使用Burst-mode解決輕載效率較低的問題會有輸出漣波大、噪音、動態響應差等問題,所以本論文使用諧振電容控制來達到輕載效率改善的效果;此外,此控制方法也可用於延長維持時間。最後,本論文實作出一台300W之AC/DC電源供應器,其輸入電壓為90 ~ 264 Vac,輸出電壓50 Vdc,滿載輸出電流6 A,整體平均功因達0.94以上,平均效率可達90%,最高效率達93%,相關實驗結果驗證所設計之具功率因數修正之諧振電容控制之半橋LLC諧振轉換器具有改善輕載效率及延長維持時間之效果。


    This thesis focuses on the design and implementation of a half-bridge LLC resonant converter with power factor correction. The traditional LLC resonant converter suffer from the problem of poor light-load efficiency. Burst-mode is usually used to solve this problem, but Burst-mode has problems like large output voltage ripple, acoustic noise, poor dynamic response. This thesis proposes a resonant capacitor controlled LLC resonant converter to improve light-load efficiency. In addition, this control method can be used to extend hold-up time. Finally, this thesis implements a 300W AC/DC power supply. The input voltage range is 90 ~ 264V_ac, the output voltage is 50V_dc, and the output current is 6 A at full-load. The overall average power factor is more than 0.94. The average efficiency is 90%, and the highest efficiency is 93%. Finally, the relevant experimental results verify that the designed resonant capacitor controlled half-bridge LLC resonant converter with power factor correction has the effect of improving light load efficiency and extending the hold-up time.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 2 1-3文獻回顧 3 1-4內容大綱 5 第二章 功率因數修正器之原理 6 2-1功率因數之定義 6 2-2功率因數修正器之電路架構 9 2-3升壓型功率因數修正器之電路分析與設計 10 2-4升壓型功率因數修正器之控制方法 14 第三章 LLC諧振轉換器之原理與分析 17 3-1開關的切換損失 17 3-2電路架構 18 3-3動作原理 21 3-4特性分析 29 3-4-1電壓增益函數分析 30 3-4-2 K值、Qe值對電壓增益的影響 34 3-4-3輕載效率低下分析 39 3-4-4 K值與效率及維持時間的取捨 41 第四章 諧振電容控制分析 42 4-1輕載效率改善原理 42 4-2維持時間延長原理 44 第五章 整體電源轉換器之設計 45 5-1 升壓型功率因數修正器電路規格設計 46 5-1-1升壓型功率因數修正器之元件參數設計 47 5-1-2升壓型功率因數修正器之PSIM模擬 50 5-2 LLC諧振轉換器電路規格設計 52 5-2-1 LLC諧振轉換器之元件參數設計 54 5-2-2 LLC諧振轉換器之PSIM模擬 63 第六章 實驗結果與討論 65 6-1 升壓型功率因數修正器之波形 66 6-2 半橋LLC諧振轉換器之波形 71 6-3 整體電源轉換器之數據量測 79 6-4 整體電源轉換器之損失分析 83 第七章 結論與未來展望 84 參考文獻 85

    [1] W. J. Gu and K. Harada, “A new method to regulate resonant converters,” IEEE Trans. on Power Electronics, vol. 3, no. 4, pp. 430-439, 1988.
    [2] A. K. S. Bhat, “Analysis, optimization and design of a series-parallel resonant converter,” in Proc. IEEE APEC, pp. 155-164, 1990.
    [3] F. C. Lee, “High-frequency quasi-resonant converter technologies,” Proceedings of the IEEE, vol. 76, no. 4, pp. 377-390, 1988.
    [4] K. H. Liu and F. C. Lee., “Zero-voltage switching technique in DC-DC converters,” IEEE Trans. on Industrial Electronics, vol. 5, no. 3, pp. 293-304 1986.
    [5] R. Liu, and C. Q. Lee, “Analysis and design of LLC-type series resonant convertor,” IEE Electron Letter, vol. 24, no.24 , pp. 1517 -1519,1988
    [6] Energy Star, 2007: http://www.energystar.gov/
    [7] European Commission, 2007: http://ec.europa.eu/index_en.htm
    [8] B. Wang, X. Xin, “Analysis and Implementation of LLC Burst Mode for Light Load Efficiency Improvement,” in Proc. IEEE APEC, pp. 58-64, 2009.
    [9] W. Feng, F.-C. Lee, “LLC resonant converter burst mode control with constant burst time and optimal switching pattern,” in Proc. IEEE APEC, pp. 6-12, 2011.
    [10] R. Beiranvand, “Optimizing the LLC–LC Resonant Converter Topology for Wide-Output-Voltage and Wide-Output-Load Applications,” IEEE Trans. on Power Electronics, vol. 26, pp. 3192-3204, 2011
    [11] S. Kim and P. N. Enjeti, “A Modular Single-Phase Power-Factor- Correction Scheme With a Harmonic Filtering Function,” IEEE Trans. on Industrial Electronics, vol. 50, No. 2, pp. 328-335, Apr., 2003.
    [12] N. Mohan, T.-M. Undeland, and W.-P. Robbins, “Power electronics,” Third Edition, John Wiley & Sons, 2002.
    [13] K. Raggl, T. Nussbaumer, G. Doerig, J. Biela and J. W. Kolar, “Comprehensive Design and Optimization of a High-Power-Density Single-Phase Boost PFC,” IEEE Trans. on Power Electronics, vol. 56, pp. 2574-2587, Jul., 2009.
    [14] M. Matsuo, K. Matsui, I. Yamamoto and F. Ueda, “A comparison of various DC-DC converters and their application to power factor correction,” IEEE Industrial Electronics Society, vol. 2, pp. 1007-1013, Oct., 2000.
    [15] M. S. Dawande and G. K Dubey, “Programmable input power factor correction method for switch-mode rectifiers,” IEEE Trans. on Power Electronics, vol. 11, pp. 585-591, Jul., 1996.
    [16] C. A. Canesin, and I. Barbi, “Analysis and Design of Constant-Frequency Peak-Current-Controlled High-Power-Factor Boost Rectifier with Slope Compensation,” in Proc. IEEE APEC, pp. 807-813, 1996.
    [17] P. J. Villegas, J. Sebastian, M. Hernando, F. Nuno and J. A. Martinez, “Average current mode control of series-switching post-regulators used in power factor correctors,” IEEE Trans. on Power Electronics, vol. 15, pp. 813-819, Sept., 2000.
    [18] R. Srinivasan and R. Oruganti, “ A unity power factor converter using half-bridge boost topology,"IEEE Trans. on Power Electronics, vol. 13, No. 3, pp. 487-500, May, 1998.
    [19] L. Huber, B. T. Irving and M. M. Jovanovic, “Open-loop control methods for interleaved DCM/CCM boundary boost PFC converters,” IEEE Trans. on Power Electronics, vol. 23, No. 4, pp. 1649-1657, Jul., 2008.
    [20] J. W. Kim, S. M. Choi and K. T. Kim, ”Variable on-time control of the critical conduction mode boost power factor correction converter to improve zero-crossing distortion,” in Proc. IEEE PEDS, pp. 1542-1546, 2005.
    [21] G. C. Chryssis, “High Frequency Switching Power Supplies: Theory & Design,” McGraw-Hill, 1989.
    [22] A. I. Pressman, “Switching Power Supply Design,” Second Edition, McGraw-Hill, 1999.
    [23] G. C Hsieh, C. Y. Tsai, and S. H. Hsieh, “Design considerations for LLC series-resonant converter in two-resonant regions,” in Proc. IEEE PESC, pp. 731-736, 2007.
    [24] Jae-Bum Lee, Jae-Kuk Kim, Jae-Il Baek, Jae-Hyun Kim, Gun-Woo Moon, “Resonant Capacitor On/Off Control of Half-Bridge LLC Converter for High-Efficiency Server Power Supply” IEEE Trans. on Industrial Electronics, vol. 63, No. 9, Sep., 2016.
    [25] 楊庭越,「具功因修正之半橋LLC諧振轉換器設計與實現」,國立中央大學電機工程學系,碩士論文,民國106年6月。
    [26] 溫雅婷,「LLC諧振轉換器設計與實現」,國立中央大電機工程學系,碩士論文,民國105年6月。
    [27] Shu Zhong, Jianping Xu, Sheng Zhao, Xiang Zhou, “Bi-frequency control for LLC resonant converter with fast transient response” ELECTRONICS LETTERS 29th September 2016 Vol. 52 No. 20 pp. 1710–1712333.
    [28] Zhiyuan Hu, Laili Wang, Yan-Fei Liu, P. C. Sen, “Bang-Bang Charge Control for LLC Resonant Converters” IEEE Transactions on Power Electronics Volume: 30, Issue: 2, Feb. 2015.

    [29] Haoyu Wang, Zhiqing Li, “A PWM LLC Type Resonant Converter Adapted to Wide Output Range in PEV Charging Applications” IEEE Transactions on Power Electronics Volume: 33, Issue: 5, May 2018.
    [30] B.-R. Lin, J.-J. Chen, C.-L. Yang, “Analysis and implementation of dual-output LLC resonant converter” 2008 IEEE International Conference on Industrial Technology.
    [31] Haiyan Pan, Chao He, Farooq Ajmal, Henglin Chen, Guozhu Chen, “Pulse-width modulation control strategy for high efficiency LLC resonant converter with light load applications” IET Power Electron., 2014, Vol. 7, Iss. 11, pp. 2887–2894.
    [32] J.-W. Kim, J.-K. Han and J.-S. Lai, “APWM adapted half-bridge LLC converter with voltage doubler rectifier for improving light load efficiency”
    ELECTRONICS LETTERS 2nd March 2017 Vol. 53 No. 5 pp. 339–341.

    QR CODE
    :::