跳到主要內容

簡易檢索 / 詳目顯示

研究生: 宋祐清
Yu-Ching Sung
論文名稱: 平面式二階段微熱電致冷器之脈衝致冷特性數值模擬
Numerical Analysis of Pulsed Cooling Performance on Two-stage Planar Thermoelectric Microcoolers
指導教授: 洪銘聰
Ming-Tsung Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 96
中文關鍵詞: 微致冷器二階段熱電效應脈衝過冷
外文關鍵詞: micro-cooler, two-stage, thermoelectric effect, pulsed supecooling
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著行動元件尺寸漸小,高功率輸出導致熱管理的困難,微熱電致冷器為極具潛力的解決方法。輸入穩定電流於垂直式熱電致冷器為研究大宗,也可用脈衝電流使溫度比穩態時更低,有利瞬態熱點冷卻。但較缺乏平面式微熱電致冷器施加脈衝之資訊量,故本文利用數值模擬軟體耦合多重物理場,使用熱擴散與電荷守恆方程並加入熱電效應,探討熱電模組配置影響單階段與二階段致冷器之過冷特性。
    首先確認穩態下致冷器能達到最大溫差的最佳穩態電流,再以此狀態輸入脈衝,分析過冷特性。穩態下,單階段致冷器熱電模組不影響致冷溫差,但材料面積增加,使致冷功率上升。爾後在單階段外跨接熱電模組形成兩階段致冷器,隨著第二階段材料增加,致冷溫差增加。施加脈衝之暫態分析下,單階段致冷器過冷溫度與維持時間都劣於二階段致冷器,但過衝溫度與回覆時間卻是相反,這是由於模組愈多造成的焦耳熱回流冷端影響。
    最後進行微致冷器於熱負載下的應用模擬分析,結果顯示穩定熱負載下使用脈衝致冷不如預期。但若是應用於瞬態熱點的冷卻能有效抑制熱點,避免加熱元件。上述本文模擬考慮於理想情況,未來可加入接觸阻抗與熱應力場分析其致冷性能之影響,並製作致冷器實驗輔以佐證。


    As the size of mobile devices become smaller and high power output causes difficulties to thermal management, micro thermoelectric coolers(TEC) are a potential solution. The input of stable current to the vertical TEC is a major research project, and pulsed current can also be aimed at making the temperature lower than that in steady state, which is advantageous for transient hot spot cooling. However, there is a lack of information about current pulse applied on a planar TEC. Therefore, this paper uses numerical simulation and couple multiple physical fields. Thermal diffusion and charge conservation equations are solved and thermoelectric effects is considered to discuss the influence of thermoelectric module configuration on single and two-stage of supercooling characteristics of the cooler.
    First, we confirmed the optimum steady-state current about the maximum temperature difference which TEC can reached, and then input pulse current to TEC to analyze the supercooling. In steady state, TE modules in single-stage cooler don’t affect the cooling temperature difference, but cooling power. Afterwards, TE modules are connected after first stage to form a two-stage cooler. The more modules in the second stage is, the larger the cold side temperature difference is. Under the transient analysis, the supercooling temperature and holding time of the single-stage cooler are both inferior to the two-stage refrigerator, but the overshoot temperature and the recovery time are opposite. This is due to the joule heating of additional TE modules to lead more heat flux flow back to cold side.
    Finally, we simulate the micro-cooler under heat loading, and the results show that the pulsed cooling under stable heat loading is not as expected. But if it’s applied on the cooling of transient hot spots, it can effectively suppress the hot spots and avoid heating elements. The simulations in this article are based on ideal conditions. In the future, contact resistances and thermal stress fields can be added to analyze the influence of its cooling performance, and can be verified with the experiment of fabricating TECs

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.3 研究動機與目的 8 1.4 論文架構 9 第二章 理論基礎 10 2.1 熱電效應 10 2.2 熱電優值 12 2.3 熱電材料 15 2.4 致冷理論 19 第三章 研究方法 25 3.1 研究架構 25 3.2 數值模擬 26 3.2.1 熱電統御方程式 26 3.2.2 模擬模型及參數設定 28 3.2.3 模擬方法 32 3.2.4 模型可靠度測試 33 3.2.4 模型簡化 37 3.3 熱電性能參數 40 第四章 結果與討論 42 4.1 穩態下最佳致冷能力模擬 42 4.1.1 單階段熱電模組數量影響致冷溫度 42 4.1.2 二階段熱電模組配置影響致冷溫度 44 4.1.3 相同占地面積下單階段與二階段比較 51 4.1.4 橋接絕緣層寬度影響二階段致冷溫度 53 4.2 施加電流脈衝過冷特性分析 55 4.2.1 單階段過冷特性分析 55 4.2.2 二階段過冷特性分析 59 4.2.3 脈衝能量影響熱電致冷比較 65 4.3 熱負載下之致冷性能 70 4.3.1 穩定熱負載下致冷器模擬 70 4.3.2 單一熱負載下致冷器模擬 71 4.3.3 週期性熱負載以連續脈衝致冷模擬 73 第五章 結論與未來工作 77 參考文獻 79

    [1] A. Ziabari, M. Zebarjadi, D. Vashaee, and A. Shakouri, “Nanoscale solid-state cooling: a review,” Reports on Progress in Physics, vol. 79, pp. 095901, 2016.
    [2] Y. Yu, W. Zhu, X. Kong, Y. Wang, P. Zhu, and Y. Deng, “Recent development and application of thin-film thermoelectric cooler,” Frontiers of Chemical Science and Engineering, vol. 14, pp. 492-503. 2019.
    [3] G.S. Hwang, A.J. Gross, H. Kim, S.W. Lee, N. Ghafouri, B.L. Huang, C. Lawrence, C. Uher, K. Najafi, and M. Kaviany, “Micro thermoelectric cooler: Planar multistage,” International Journal of Heat and Mass Transfer, vol. 52, pp. 1843-1852, 2007.
    [4] M. Manno, P. Wang, Member, IEEE, and A. Bar-Cohen, “Pulsed Thermoelectric Cooling for Improved Suppression of a Germanium Hotspot,” Packaging and Manufacturing Technology, vol. 4, p. 603-611, 2014.
    [5] Ihring, E. Kessler, U. Dillner, U. Schinkel, M. Kunze ,and S. Billat, “A Planar Thin-Film Peltier Cooler for the Thermal Management of a Dew-Point Sensor System,” Journal of Microelectromechanical Systems, vol. 24, p. 990-996, 2015.
    [6] S. Lin, M. Ma, J. Wang ,and J. Yu, “Experiment investigation of a two-stage thermoelectric cooler under current pulse operation,” Applied Energy, vol. 180, p. 628-636, 2016.
    [7] Y. Su, J. Lu, D. Villaroman, D. Li ,and B. Huang, “Free-standing Planar Thermoelectric Microrefrigerators based on Nano-grained SiGe Thin Films for On-Chip Refrigeration,” Nano Energy, vol. 18, p. 202-210, 2018.
    [8] G. S. Nolas, J. Sharp, and H. J. Goldsmid, “Thermoelectric Basic Principles and New Materials Developments, ” Springer, 2001.
    [9] O. Yamashita, “Effect of metal electrode on Seebeck coefficient of p- and n-type Si thermoelectrics,” Journal of Applied Physics, vol. 95, p. 178-183, 2004.
    [10] R. R. Heikes and R. W. Ure,Jr. , “Thermoelectricity: Science and Engineering,” Interscience Publishers, vol. 12, pp. 514, 1961.
    [11] W. Kim, “Strategies for engineering phonon transport in thermoelectrics,” Journal of Material Chemistry, vol. 3, p. 10336-10348, 2015.
    [12] Daniel Thompson, “Thermoelectric Properties of Silicon Germanium: An In-depth Study to the Reduction of Lattice Thermal Conductivity,” Clemson University Libraries, No. 984, 2012.
    [13] P. Bellanger, S. Gorsse, G. B. Grange, C. Navone, A. Redjaimia, and S. Vivès, “Effect of microstructure on the thermal conductivity of nanostructured Mg2(Si,Sn) thermoelectric alloys: An experimental and modeling approach,” Acta Materialia, vol. 95,p. 102-110, 2015.
    [14] M. Wolf , R. Hinterding and A, and Feldhoff, “High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application,” Entropy, vol. 21, pp. 1058-1090, 2019.
    [15] J. Bundschuh and M.C. Suarez Arriaga, “Introduction to the numerical modeling of groundwater and geothermal systems,” 2010.
    [16] A, Nozariasbmarz, P. Roy, Z. Zamanipour, J. H. Dycus, M. J. Cabral, J. M. LeBeau,J. S. Krasinski, and D. Vashaee, “Comparison of thermoelectric properties of nanostructured Mg2Si, FeSi2, SiGe, and nanocomposites of SiGe–Mg2Si, SiGe–FeSi2,” APL MATERIALS, vol. 4, pp.104814, 2016.
    [17] Y. Su, J. Lu, and B. Huang, “Free-standing planar thin-film thermoelectric microrefrigerators and the effects of thermal and electrical contact resistances,” International Journal of Heat and Mass Transfer, vol. 117, p.436-446, 2018.
    [18] M. Hodes, “On One-Dimensional Analysis of Thermoelectric Modules (TEMs),” IEEE Transaction on Components and Packaging Technologies, vol. 28, p. 218-229, 2005.
    [19] Josef L. Miler, “LIMITS OF HOTSPOT DETECTION AND PREDICTION IN MICROPROCESORS,” Department of Mechanical Engineering and The Committee on Graduate Studies of Stanford University, 2012.
    [20] J.P. Fleurial, G.J. Snyder, J.A. Herman, P.H. Giauque, W.M. Phillips,M.A. Ryan, P. Shakkottai, E.A. Kolawa, and M.A. Nicolet. “Thick-Film Thermoelectric Microdevices,” 18th International Conference on Thermoelectflcs, pp. 5451-6, 2000.
    [21] J.L. Ocana, M. Morales, C. Molpeceres, O. Garcia, J.A. Porro, and J.J. G.Ballesteros, “Short pulse laser microforming of thin metal sheets for MEMS manufacturing,” Applied Surface Science, vol. 254, pp. 991-1001, 2007.

    QR CODE
    :::