跳到主要內容

簡易檢索 / 詳目顯示

研究生: 丘翊歆
Yi-Hsin Chiu
論文名稱: 超導雙量子位元電路的實現
Experimental Realization of Superconducting Two-qubit Quantum Circuit
指導教授: 陳永富
Yung-Fu Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 73
中文關鍵詞: 超導量子電路電路型量子電動力學
外文關鍵詞: Superconducting quantum circuit, Circuit quantum electrodynamics
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前我們實驗室對於單個超導量子位元的量測與控制已逐漸成熟,接下來的目標則是研究雙量子位元的控制。在這篇論文裡,我介紹了一些有關單個超導量子位元、超導共面波導共振腔與雙量子位元之間耦合強度的設計方法,我們設計兩種方式做雙量子位元之間的耦合,一種是利用電容耦合,第二種是利用共振腔耦合,也介紹在我們實驗室的製程發展,最後是有關於雙量子位元元件的量測與分析,我的主要目標是著重於利用高頻連續波的測量,觀察雙量子位元之間的作用,從結果有得到單個量子位元的特性,與設計相當接近,雖然沒有直接看到雙兩子位元之間的耦合,但有觀察到耦合的跡象。


    In our lab, the control of single superconducting transmon qubit is complete gradually. Next, we aim to use tunable superconducting transmon qubits to experimentally realize the programmable two-qubit interaction. In this thesis, I introduce the method for the design of a transmon qubit, coplanar waveguide quarter wave resonator and the interaction between two qubits. The coupling between two qubits is via a direct capacitance or via a resonator bus. The fabrication process developed in our lab is also described. The target of my thesis is to use continuous wave measurement to identify the coupling between two superconducting transmon qubits. The experimental results give a good characteristic for a single-qubit system, but the evidence for coupling between two qubits is absent. However, in the two-tone measurement, the results show the hint for the two-qubit coupling.

    摘要 xi Abstract  xiii Contents xv 1. Introduction 1 2. Circuit Quantum Electrodynamics 3 2.1 Quantum LC Circuit 4 2.2 Superconducting Josephson Junction 5 2.3 Cooper Pair Box 7 2.4 Transmon Qubit 9 2.5 Quarter Wave Resonator 9 2.6 Jaynes-Cummings Hamiltonian 13 2.7 Two-qubit system 16 2.8 Interaction between Two Qubits 18 3. Design and Fabrication 19 3.1 Design 19 3.2 Deposition 25 3.3 Optical Lithography 25 3.4 E-beam Lithography 27 4. Sample Box Design 31 4.1 Fabrication of Insert-pin 32 4.2 Assembly 33 5. Measurement Setup 35 5.1 Cryogenics 35 5.2 Microwave Instruments 37 5.3 Wiring and Components 37 6. Data Analysis 41 6.1 Two-qubit Coupling via a Direct Coupler 41 6.2 Two-qubit Coupling via a Resonator Bus 48 7. Conclusion 53 8. Appendix 55

    [1] Blais, A. Huang, R. S., Wallraff, A., Girvin, S.M., and Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting eletrical circuits : An architecture for quantum computation. Physical Review A, \textbf{69}, 2004.

    [2] Wallraff, A., Schuster, D. I., Blais, A., Frunzio, L., Huang, R. S., Majer, J., Kumar, S., Girvin, S. M., and Schoelkopf, R. J. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, \textbf{431}(7005), 162-167, 2004.

    [3] D. I. Schuster, Circuit quantum electrodynamics. PhD thesis, Yale University, UMI No. 3267357, 2007.

    [4] Benjamin A. Mazin, Microwave Kinetic Inductance Detectors, PhD thesis, California Institue of Technology, 2004.

    [5] Devoret, M. H., and Martinis, J. M. Implementing Qubits with Superconducting Integrated Circuits. Quantum Information Processing, 3(1–5), 163-203, 2004.

    [6] M. H. Devoret, Quantum fluctuations in electrical circuits, in Quantum Fluctuations: Les Houches Session LXIII, 1995. edited by S. Reynaud, E. Giacobino, and J. Zinn-Justin (Elsevier, Amsterdam, The Netherlands, 351, 1997.

    [7] Didier, N., Sete, E. A., da Silva, M. P.,and Rigetti, C. Analytical modeling of parametrically modulated transmon qubits. Physical Review A, \textbf{97}, 2018.

    [8] Blais, A., Gambetta, J., Wallraff, A., Schuster, D. I., Girvin, S. M., Devoret, M. H.,and Schoelkopf, R. J. Quantum-information processing with circuit quantum electrodynamics. Phys Rev A, \textbf{75}, 2007.

    [9] Majer, J., Chow, J. M., Gambetta, J. M., Koch, J., Johnson, B. R., Schreier, J. A., Frunzio, L., Schuster, D. I., Houck, A. A., Wallraff, A., Blais, A., Devoret, M. H., Girvin, S. M., and Schoelkopf, R. J. Coupling superconducting qubits via a cavity bus. Nature, \textbf{449}(7161), 443-447, 2007.

    [10] M.D. Reed \emph{et al}. High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity. Phys. Rev. Lett, \textbf{105}, 173601, 2010.

    QR CODE
    :::