跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柯勝利
Sheng-Li Ko
論文名稱: 對苯二乙烯衍生物的合成與光電性研究/
Study of the Synthesis of Oligo(phenylenevinylene)sand Their Photophysical and Optoelectronic Properties /Stereoselective Synthesis of (Z)-a-Phenoxymethy-lene-g-butyrolactone from 2-Propynyloxybenzene
指導教授: 陳暉
Hui Chen
羅芬臺
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 91
語文別: 英文
論文頁數: 209
中文關鍵詞: 對苯二乙烯衍生物丁內酯化合物
外文關鍵詞: distyrylbenzene derivatives, butyrolactone
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主題之一是合成一系列在分子內不同位置上帶有拉電子的氰基
    或推電子的甲氧基之二苯乙烯苯,或稱苯乙烯寡分子,並研究其吸收與放射光譜
    及在電致發光上的性質。研究顯示,上述這些分子,可作填充劑置於電子傳輸層
    內並放出藍光和綠光。正己氧基與2-乙正己氧基及氰基在苯乙烯寡分子的吸收與
    放射光譜中的最大吸收與放射波長並無明顯的不同,但2-乙正己氧基在電致發光
    二極體中可比正己氧基產生更純的藍光。推電子的甲氧基則會產生較偏綠光的電
    致發光波長。研究結果也顯示具有高螢光量子產率的化合物未必具有高電致發光
    之量子產率,反而具有較低螢光量子產率的化合物可具有較高的電致發光之量子
    產率。帶有氰基及烷氧基之二苯乙烯苯,在鐵氟龍之表面上作摩擦-轉移後可作
    取向附生性的生長。而此二苯乙烯苯與鐵氟龍之雙層材料也在吸收與放射光譜上
    顯示出非比尋常的非等方性的特性。我們根據其吸收與放射光譜在平行與垂直方
    向上呈45 度角的激發光之下得到的結果,提出三種分子在鐵氟龍表面上的可能
    之立體排列狀態。亦即,與鐵氟龍之表面上摩擦方向有垂直,平行,和垂直與平
    行三種空間的排列。原子力顯微鏡的結果與三種分子在鐵氟龍表面上的可能之立
    體排列狀態也非常吻合。共軛型的炔酮類化合物在碘化鈉,氯化三甲基矽及水,
    並以乙 作溶劑下,可進行反應得到產率及立體選擇性均佳的非共軛型的(順式)-
    碘化烯酮類化合物。研究結果顯示3-癸炔-2-酮的反應是由先產生的碘化氫進行
    炔基加成反應,得到(順式)-及(反式)-4-碘-3-癸烯-2-酮,再進行氯化三甲基矽催
    化的非共軛化反應產生(順式)-4-碘-4-癸烯-2-酮。利用上述非共軛化反應,我們
    成功地開發一種利用碘化非共軛烯酮的分子來合成在α-位置上帶有順式的苯氧
    或苯硫取代基之碳-碳環外雙鍵丁內酯化合物。此類化合物可用來作為DNA 的
    切割試劑,濃度可低至10 µM。


    A series of distyrylbenzene (DSB) derivatives, as oligo(para-phenylene-
    vinylene) (OPV), were synthesized and assessed as the emitter in organic light
    emitting diode (OLED) fabrication. The presence of electron-withdrawing cyano
    group and electron-donating methoxy group at various positions in the molecule to
    evaluate their influence on the photophysical property and the electroluminescent
    behavior of these derivatives in OLED were studied. Bright blue emissions were
    achieved with these materials as a dopant. There were not much difference in the
    absorption and emission spectra of the compounds containing n-hexyloxy and
    2-ethylhexyloxy groups. However, 2-ethylhexyloxy groups produce more saturated
    blue color in their EL. The compounds with higher fluorescent quantum yield did not
    result in higher EL quantum efficiency in this multiplayer OLED fabrication as that of
    compounds with lower fluorescent quantum yield. DSB derivatives with cyano and
    alkoxy groups grew epitaxially on the friction-transferred poly(tetrafluoroethylene)
    (PTFE) layer. DSBs/PTFE double layers indicated the remarkable anisotropic feature
    in absorption and emission properties. We concluded that trans,trans-1,4-
    di(2-ethyl-hexyloxy)-2,5-bis[2-(4-cyanophenyl)ethenyl]benzene molecules take two
    kinds of orientations on the PTFE layer in which the long axes of
    trans,trans-1,4-di(2-ethyl-hexyloxy)-2,5-bis[2-(4-cyanophenyl)ethenyl]benzene are
    parallel and normal to the substrate surface. On the other hand, the long axes of
    trans,trans-1,4-di(2-ethylhexyloxy)-2,5-bis[2-(2-cyanophenyl)ethenyl]- benzene and
    trans,trans-1,4-di(2-ethyl-hexyloxy)-2,5-bis[2-(3-cyanophenyl)-ethenyl]benzene ori-
    ent inclined and parallel to the substrate, respectively. Treatment of conjugated
    alkynone with NaI, TMSCl, and water in acetonitrile gave deconjugated
    (Z)-3-iodo-3-alken-1-one in good yield and with high stereoselectivity (≥95%).
    Mechanistic study showed that HI, generated from NaI, TMSCl and water, underwent
    regioselective addition to the conjugated ynone, e.g. 3-decyn-2-one, to form
    (E)-4-iodo-3-decen-2-one and (Z)-4-iodo-3-decen-2- one. Then, TMSCl catalyzed the
    deconjugation reaction to form deconjugated (Z)-4-iodo-4-decen-2-one. The
    application of the above deconjugation reaction was demonstrated by the
    stereoselective synthesis of (Z)-α-phenoxy-methylene- γ-butyrolactone and its
    hydrofuran analogues. DNA cleavage study also showed that γ-butyrolactone with
    (Z)-configuration at α-alkylidene gave better result than its analogue even at 10µM
    for only 10 min. The development of an efficient method for the preparation of
    (Z)-α-phenoxy-methylene-γ-butyrolactone and (Z)-α-phenylthiomethyl-γ-butyro-
    lactone derivatives from 2-propynyoxybenzene and 2-propynylthiobenzene were
    described.

    中文摘要………………….…………………………..... I Abstract ……………………………………………..… III CHAPTER 1 Efficient Electroluminescent Material for Light-Emitting Diodes from 1,4-Distyrylbenzene Derivatives Page Abstract ……………………………………………… 1 1.1 Introduction ……………………………………………… 1 1.2 Instrumentation ……………………………………………… 2 1.3 Devices Fabrication ……………………………………………… 3 1.4 Results and Discussion ……………………………………………… 4 1.5 Conclusion ……………………………………………… 18 1.6 Experimental ……………………………………………… 18 1.7 References ……………………………………………… 26 Chapter 2 Fabrication and Characteriz- ation of Orientatation-Controll- ed Alkoxy- and Cyano-Sub- stituted Distyrylbenzene Deriva- tives in Thin Film Page Abstract ……………………………………………… 29 2.1 Introduction ……………………………………………… 29 2.2 Results and Discussion ……………………………………………… 30 2.3 Conclusion ……………………………………………… 52 2.4 Experimental ……………………………………………… 53 2.5 References ……………………………………………… 56 Chapter 3 Stereoselective Synthesis of (Z)-α-Phenoxy-methylene-γ-buty rolactone from 2-Propynyloxy- benzene as DNA Cleavage Reagent Page Abstract ……………………………………………… 57 3.1 Introduction ……………………………………………… 57 3.2 Results and Discussion ……………………………………………… 71 3.3 Conclusion ……………………………………………… 77 3.4 Experimental ……………………………………………… 78 3.5 References ……………………………………………… 95 Chapter 4 Stereoselective Synthesis of (Z)-α-Phenylthio-methylene-γ- butyrolactone and Its Analogues from 2-Propynylthiobenzene Page Abstract ……………………………………………… 100 4.1 Introduction ……………………………………………… 100 4.2 Results and Discussion ……………………………………………… 101 4.3 Conclusion ……………………………………………… 104 4.4 Experimental ……………………………………………… 104 4.5 References ……………………………………………… 110 Chapter 5 Conclusion Page 5.1 Study of the Synthesis of Oligo(phenylenevinylene)s and Their Photophysical and Opto- electronic Properties ……………………………………………… 112 5.2 Stereoselective Synthesis of (Z)-α-Phenoxymethylene-γ- butyrolactone from 2-Propynyloxybenzene ……………………………………………… 114 List of Schemes Page Scheme 1.1 Synthesis of the Cyano- or Methoxy-Substituted Distyryl- benzene………………………………………………………..… 5 Scheme 3.1 Plausible Mechanism for the TMSCl-Catalyzed Deconjugation of (Z)-4-iodo-4-decen-2-one…………………………………….. 64 Scheme 3.2 Plausible Hydroiodination and Deconjugation Processes for 3-Decyn-2-one…………………………………………………… 66 Scheme 3.3 Plausible Mechanism for Pd-Catalyzed CO Insertion and Cyclization……………………………………………………….. 69 Scheme 3.4 Irreversible Alkylation of the Methylene Lactone Moiety………………………………………………………….... 71 Scheme 3.5 Preparation of α-Phenoxymethylene or Phenoxymethyl- Substituted γ-Butyrolactones………………………………….… 74 Scheme 4.1 Preparation of α-Phenylthiomethylene or Phenylthiomethyl- Substituted γ-Butyrolactones…………………………………….. 103 List of Figures Page Figure 1.1 Device Configuration of Blue EL Devices……..…………………. 4 Figure 1.2 Normalized UV spectra of DSB derivatives and emission of TPBI……………………………………………………………….. 6 Figure 1.3 Relative HOMO/LUMO Energy Levels of ITO, NPB, CBP, TPBI, Mg:Ag Alloy, and CN-PPV Oligomers…………..……………….. 9 Figure 1.4 Relative Energy Levels of Materials in the Three-Layer Device………………………………………………..………..…... 10 Figure 1.5 Normalized EL spectra of DSBs in ITO/NPB/CBP/TPBI + Dopant (1%)/MgAg….……………..……………………………………. 11 Figure 1.6 CIE Coordinates of 1-1 ~ 1-3……………………………………… 12 Figure 1.7 I-V Curve and Luminescence of DSB Series 1-1 ~ 1-3………..….. 13 Figure 1.8 I-V Curve and Luminescence of DSB Series 1-4 ~ 1-6……..…….. 13 Figure 1.9 I-V Curve and Luminescence of DSB Series 1-7 ~ 1-9…..……….. 14 Figure 1.10 Turn-on Voltage of DSB Series…………………………..………... 14 Figure 1.11 CIE Coordinates of 1-4 ~ 1-6…………………………..………….. 16 Figure 1.12 CIE Coordinates of 1-7 ~ 1-9………………………..…………….. 17 Figure 2.1 Molecular Structures of DSB Derivatives Used Here…………….. 30 Figure 2.2 Absorption and PL Spectra of DSBs in CHCl3 Solution….…….… 32 Figure 2.3 TEM and ED pattern of 2-1/PTFE(a), 2-2/ PTFE(B) and 2-3/PTFE(c) double layer………………………………….………. 33 Figure 2.4 Experimental set up for polarized PL mesurement and polarized absorption and PL spectra of DSBs/PTFE double layer……..……. 35 Figure 2.5 Proposed Model of Molecular Orientation of DSBs/PTFE Double Layer………………………………………………………….…… 37 Figure 2.6 AFM image of 2-1 film deposited on a friction-transferred PTFE layer kept at rt. (film thickness: 20 nm)…………………………… 38 Figure 2.7 AFM image of 2-1 film deposited on a KBr substrate kept at rt. (film thickness: 20 nm)………………………………………….… 39 Figure 2.8 AFM image of 2-2 film deposited on a friction-transferred PTFE layer kept at rt. (film thickness: 20 nm)…………………………… 40 Figure 2.9 AFM image of 2-2 film deposited on a KBr substrate kept at rt. (film thickness: 20 nm)………………………………….………… 41 Figure 2.10 AFM image of 2-3 film deposited on a friction-transferred PTFE layer kept at rt. (film thickness: 20 nm)………………………….... 42 Figure 2.11 AFM image of 2-3 film deposited on a KBr substrate kept at rt. (film thickness: 20 nm)…………………………………….……… 43 Figure 2.12 AFM image of 1-2 film deposited on a friction-transferred PTFE layer kept at rt. (film thickness: 20 nm)………………………….... 44 Figure 2.13 AFM image of 1-2 film deposited on a KBr substrate kept at rt. (film thickness: 20 nm)………………………………………….… 45 Figure 2.14 AFM image of 1-3 film deposited on a friction-transferred PTFE layer kept at rt. (film thickness: 29 nm)…………………….……... 46 Figure 2.15 AFM image of 1-3 film deposited on a KBr substrate kept at rt. (film thickness: 29 nm)……………………………………………. 47 Figure 2.16 AFM image of 1-3 film deposited on a friction-transferred PTFE layer kept at 50℃. (film thickness: 37 nm)……………………….. 48 Figure 2.17 AFM image of 1-3 film deposited on a KBr substrate kept at 50℃. (film thickness: 37 nm)…………….……………………………… 49 Figure 2.18 UV-VIS spectra of 2-1, 2-2, and 2-3 films deposited on a KBr substrate…………………………………………………………… 50 Figure 2.19 Polarized absorption spectra of 2-1 / PTFE double layer………….. 50 Figure 2.20 Polarized absorption spectra of 2-2 / PTFE double layer………….. 51 Figure 2.21 Polarized absorption spectra of 2-3 / PTFE double layer…………. 51 Figure 2.22 Polarized absorption spectra of 1-2 / PTFE double layer………….. 52 Figure 3.1 1H-NMR Spectra Changes with Time for TMSCl-Promoted Deconjugation of (E)- and (Z)-4-Iodo-3-decen-2-one to Form (Z)-4-Iodo-4-decen-2-one………………………………………….. 63 Figure 3.2 DNA Cleavage Study of 3-8a (Compound 2) and 3-9a (Compound 1) at Different Concentration in DMSO…………………………… 75 Figure 3.3 DNA Cleavage Study of 3-8a (Compound 2) and 3-9a (Compound 1) at Different Time………………………………………………... 76 Figure 3.4 DNA Cleavage Study of 3-8a (Compound 2) and 3-9a (Compound 1) at Different pH Values…………………………………………... 77 List of Tables Page Table 1.1 The absorption λmax, extinction coefficiency, emission λmax, excitation λmax, fluorescent quantum yield, and the appearance color of PPV oligomers……………………………………………. 8 Table 1.2 Performance of the LEDs Fabricated in This Study………………. 15 Table 3.1 Conversion of (Z)-3-Iodo-3-alken-1-one A into (Z)-a-Alkyli dene- γ- butyrolactone C…………………………………………….…... 68 Appendix Page 1H NMR spectrum of Compound 1-1 …………………………..……... 116 13C NMR spectrum of Compound 1-1 …………………………..……... 117 1H NMR spectrum of Compound 1-2 …………………………..……... 118 13C NMR spectrum of Compound 1-2 …………………………..……... 119 1H NMR spectrum of Compound 1-3 …………………………..……... 120 13C NMR spectrum of Compound 1-3 …………………………..……... 121 1H NMR spectrum of Compound 1-4 …………………………..……... 122 13C NMR spectrum of Compound 1-4 …………………………..……... 123 1H NMR spectrum of Compound 1-5 …………………………..……... 124 13C NMR spectrum of Compound 1-5 …………………………..……... 125 1H NMR spectrum of Compound 1-6 …………………………..……... 126 13C NMR spectrum of Compound 1-6 …………………………..……... 127 1H NMR spectrum of Compound 1-7 …………………………..……... 128 13C NMR spectrum of Compound 1-7 …………………………..……... 129 1H NMR spectrum of Compound 1-8 …………………………..……... 130 13C NMR spectrum of Compound 1-8 …………………………..……... 131 1H NMR spectrum of Compound 1-9 …………………………..……... 132 13C NMR spectrum of Compound 1-9 …………………………..……... 133 1H NMR spectrum of Compound 2-1 …………………………..……... 134 13C NMR spectrum of Compound 2-1 …………………………..……... 135 1H NMR spectrum of Compound 2-2 …………………………..……... 136 13C NMR spectrum of Compound 2-2 …………………………..……... 137 1H NMR spectrum of Compound 2-3 …………………………..……... 138 13C NMR spectrum of Compound 2-3 …………………………..……... 139 1H NMR spectrum of Compound 3-1a …………………………..……... 140 13C NMR spectrum of Compound 3-1a …………………………..……... 141 1H NMR spectrum of Compound 3-1b …………………………..……... 142 13C NMR spectrum of Compound 3-1b …………………………..……... 143 1H NMR spectrum of Compound 3-2a …………………………..……... 144 13C NMR spectrum of Compound 3-2a …………………………..……... 145 1H NMR spectrum of Compound 3-2b …………………………..……... 146 13C NMR spectrum of Compound 3-2b …………………………..……... 147 1H NMR spectrum of Compound 3-2c …………………………..……... 148 13C NMR spectrum of Compound 3-2c …………………………..……... 149 1H NMR spectrum of Compound 3-2d …………………………..……... 150 13C NMR spectrum of Compound 3-2d …………………………..……... 151 1H NMR spectrum of Compound 3-3a …………………………..……... 152 13C NMR spectrum of Compound 3-3a …………………………..……... 153 1H NMR spectrum of Compound 3-3b …………………………..……... 154 13C NMR spectrum of Compound 3-3b …………………………..……... 155 1H NMR spectrum of Compound 3-3c …………………………..……... 156 13C NMR spectrum of Compound 3-3c …………………………..……... 157 1H NMR spectrum of Compound 3-3d …………………………..……... 158 13C NMR spectrum of Compound 3-3d …………………………..……... 159 1H NMR spectrum of Compound 3-4a …………………………..……... 160 13C NMR spectrum of Compound 3-4a …………………………..……... 161 1H NMR spectrum of Compound 3-4b …………………………..……... 162 13C NMR spectrum of Compound 3-4b …………………………..……... 163 1H NMR spectrum of Compound 3-4c …………………………..……... 164 1H NMR spectrum of Compound 3-5a …………………………..……... 165 1H NMR spectrum of Compound 3-5b …………………………..……... 166 1H NMR spectrum of Compound 3-5c …………………………..……... 167 13C NMR spectrum of Compound 3-5c …………………………..……... 168 1H NMR spectrum of Compound 3-5d …………………………..……... 169 1H NMR spectrum of Compound 3-6a …………………………..……... 170 1H NMR spectrum of Compound 3-6b …………………………..……... 171 13C NMR spectrum of Compound 3-6b …………………………..……... 172 1H NMR spectrum of Compound 3-6c …………………………..……... 173 13C NMR spectrum of Compound 3-6c …………………………..……... 174 1H NMR spectrum of Compound 3-6d …………………………..……... 175 13C NMR spectrum of Compound 3-6d …………………………..……... 176 1H NMR spectrum of Compound 3-7a …………………………..……... 177 13C NMR spectrum of Compound 3-7a …………………………..……... 178 1H NMR spectrum of Compound 3-7d …………………………..……... 179 13C NMR spectrum of Compound 3-7d …………………………..……... 180 1H NMR spectrum of Compound 3-8a …………………………..……... 181 13C NMR spectrum of Compound 3-8a …………………………..……... 182 1H NMR spectrum of Compound 3-8b …………………………..……... 183 13C NMR spectrum of Compound 3-8b …………………………..……... 184 1H NMR spectrum of Compound 3-8c …………………………..……... 185 13C NMR spectrum of Compound 3-8c …………………………..……... 186 1H NMR spectrum of Compound 3-8d …………………………..……... 187 13C NMR spectrum of Compound 3-8d …………………………..……... 188 1H NMR spectrum of Compound 3-9a …………………………..……... 189 13C NMR spectrum of Compound 3-9a …………………………..……... 190 1H NMR spectrum of Compound 3-9b …………………………..……... 191 13C NMR spectrum of Compound 3-9b …………………………..……... 192 1H NMR spectrum of Compound 3-9d …………………………..……... 193 13C NMR spectrum of Compound 3-9d …………………………..……... 194 1H NMR spectrum of Compound 4-1 …………………………..……... 195 1H NMR spectrum of Compound 4-2 …………………………..……... 196 13C NMR spectrum of Compound 4-2 …………………………..……... 197 1H NMR spectrum of Compound 4-3 …………………………..……... 198 13C NMR spectrum of Compound 4-3 …………………………..……... 199 1H NMR spectrum of Compound 4-4 …………………………..……... 200 13C NMR spectrum of Compound 4-4 …………………………..……... 201 1H NMR spectrum of Compound 4-6 …………………………..……... 202 13C NMR spectrum of Compound 4-6 …………………………..……... 203 1H NMR spectrum of Compound 4-7 …………………………..……... 204 13C NMR spectrum of Compound 4-7 …………………………..……... 205 1H NMR spectrum of Compound 4-8 …………………………..……... 206 13C NMR spectrum of Compound 4-8 …………………………..……... 207 1H NMR spectrum of Compound 4-9 …………………………..……... 208 13C NMR spectrum of Compound 4-9 …………………………..……... 209

    Chapter 1
    1.7 REFERENCES
    1. N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, and A. B. Holems, Nature, 1993, 365, 628.
    2. H. E. Katz, S. F. Bent, W. L. Wilson, M. L. Schilling, and S. B. Ungashe, J. Am. Chem. Soc. 1994, 116, 6631.
    3. (a) D. Oelkrug, A. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M. Hohloch, and E. Steinhuber, J. Phys. Chem. B 1998, 102, 1902. (b) A. Heller, J. Chem. Phys. 1964, 40, 2839.
    4. S. E. Döttinger, M. Hohloch, D. Hohnholz, J. L. Segura, E. Steinhuber, and M. Hanack, Synth. Metals, 1997, 84, 267.
    5. H. Ndayikengurukiye, S. Jacobs, W. Tachelet, J. van der Looy, A. Pollaris, H. J. Geise, M. Claeys, J. M. Kauffamnn, and S. Janietz, Tetrahedron, 1997, 53, 13811.
    6. J. Cornil, D. A. dos Santos, D. Beljoune, and J. L. Brédas, J. Phys. Chem. 1995, 99, 5604.
    7. D. Oelkrug, A. Tompert, H. J. Egelhaaf, M. Hanack, E. Steinhuber, M. Hohloch, H. Meier, and U. Stalmach, Synth. Metals, 1996, 83, 231.
    8. (a) K. H. Schweikart, M. Hanack, L. Lüer, and D. Oelkrug, Eur. J. Org. Chem. 2001, 293. (b) S. Nakatsuji, K. Matsuda, Y. Uesugi, K. Nakashima, S. Akiyama, G. Katzer, and W. Fabian, J. Chem. Soc. Perkin Trans. 2, 1991, 861.
    9. J. L. Segura and N. Martin, J. Mater. Chem. 2000, 10, 2403.
    10. S. E. Döttinger, M. Hohloch, J. L. Segura, E. Steinhuber, M. Hanack, A. Tompert, and D. Oelkrug, Adv. Mater. 1997, 9, 233.
    11. M. Hennecke, T. Damerau, and K. Mullen, Macromolecules 1993, 26, 3411.
    12. C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett. 1995, 67, 3853.
    13. N. N. Barashkov, D. J. Guerrero, H. J. Olivos, and J. P. Ferraris, Synth. Metals 1995, 75, 153.
    14. M. Hohloch, J. L. Segura, S. E. Döttinger, D. Hohnholz, E. Steinhuber, H. Spreitzer, and M. Hanack, Synth. Metals 1997, 84, 319.
    15. B. Strehmel, A. M. Sarker, J. H. Malpart, V. Strehmel, H. Seifert, and D. C. Neckers, J. Am. Chem. Soc. 1999, 121, 1226.
    16. (a) B. E. Koene, D. E. Loy, and M. E. Thompson, Chem. Mater. 1998, 10, 2235. (b) J. Shi, C. W. Tang, and C. H. Chen, U. S. Patent 1997, 5, 645, 948. (c) C. H. Chen and J. Shi, Coord. Chem. Rev. 1998, 171, 161.
    17. Since the absorption

    QR CODE
    :::